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ABSTRACT 

This final report presents the results of a study to  select  an  optimum design 

fo r  a compact storable solar  a r r a y  system for  use with spin stabilized 

satellites. 

panels were considered. 

made on the basis  of minimum weight, high power to weight ratios, environ- 

mental compatibility, reliability, minimum packaged volumes, state-of -the- 

art materials and moderate cost. The study has culminated in a final design 

using a flexible substrate with a sc i ssors  type extension mechanism. 

sc i ssors  a r e  driven by spring loaded screw jacks and controlled during 

deployment by a centrifugal brake mechanism. A dynamic, thermal and a 

structural  analysis of the f ina l  configuration is included. 

In this study several  concepts of both flexible and rigid solar  

The elimination of less favorable concepts were 

The 

During this study it was  found that for smaller  payloads the flexible panel 

is generally more  favorable if package volume and weight are primary 

considerations. It is possible, however, that a rigid panel may be better,  

if package depth is extremely limited, 

1. 50 inches the flexible a r r a y  is not practical. 

For depths of package l e s s  than 

The most cri t ical  requirements imposed on the design was found to be 1 g 

condition and the limited depth of the package. 

increase the weight of the extension mechanism and drive system. 

most important item for  further development is the flexible substrate, 

especially in the area of manufacturing processes and testing. 

efficient packaging arrangement could be made i f  the geometry of the 

spacecraft and launch vehicle were specified. 

The effect of these are to  

The 

A more  
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I .. 

1 . 0  INTRODUCTION 

Fairchild Hiller 's  Space Systems Division has conducted a study for  the 

Goddard Space Flight Center directed toward increasing packaging density 

fo r  satellite borne solar  cell  arrays.  High density packaging is desired to 

provide greater a r r ay  area, and hence; an increment in available power 

within the limitations of space and weight constraints placed on a given 

spacecraft application. 

flexibility in design of subsystems. 

This increased available power allows a greater  

The method of approach applied to the design problem by Fairchild Hiller 

Corporation is described graphically in Figure 1.1. This procedure was 

designed to  enable an optimum selection among the various possible 

alternates in minimum time. 

1 .1  SUMMARY 

The design offered fo r  evaluation in this report utilizes a flexible substrate 

driven by a sc issor  linkage extension system. The design study has shown 

that this approach offers the best packaging efficiency and lowest weight of 

the several  configurations studied. 

listed below. 

The design chosen used the ground rules 

0 The solar a r ray  package dimensions shall be no greater  than 

thirteen inches wide by twenty-five inches long by four inches 

deep. It shall deploy to the dimensions of one foot wide by 

eight feet long with solar cells mounted on the two sides of 

this area.  The deployment mechanism shall  be capable of 

maintaining a rigid configuration in the ear th 's  gravitational 

field. 

a r e  given in Figure 1.1. 

that for ground deployment the x axis will be vertical. 

The relationships between the a r r ay  and the spacecraft 

The further stipulation has been made 

1 



0 The a r r ay  shall be capable of positive deployment and of 

maintaining dimensional integrity while spinning on the body 

of a spacecraft a t  an  initial ra te  (before deployment) of 80 - 160 

revolutions per  minute and a final rate (after deployment) of 

20  - 40 revolutions per  minute. 

0 The total weight including mechanisms, wiring, interc onnectors, 

and solar  cells with attached six mil glass slips shall  not 

exceed twelve pounds. 

0 The deployment mechanism shall  be capable of reliable opera - 
tion in the hard vacuum of space. 

0 Substrate surfaces shall be compatible with RTV-40 o r  s imilar  

cell bonding materials. 

0 The packaged a r r a y  shall be capable of withstanding shock, 

vibration and accelerations such as might be experienced by 

ar rays  during launch. 

0 A l l  materials shall be nonmagnetic, capable of withstanding 

radiations (including both ultra-violet and hard particles) 

experienced in space, and capable of withstanding humidity 

(up to 9570 RH at  30 C for twenty-four hours). 0 

0 The packaged a r r a y s  shall be capable of long-term (100 days) 

storage at temperatures which may vary from -20 C to  +60 C. 

They also shall be capable of withstanding hard vacuum 

conditions for extended periods (one to five years)  without 

excessive deterioration. 

0 0 

0 The extended a r r ay  shall be capable of withstanding a thermal 

cycling tes t  a t  1 0  

1000 cycles a t  a nominal ra te  of two hours per  cycle. 

- 7  0 0 t o r r  pressure from -70 C to  +70 C for  

2 



0 Structure shall be capable of meeting the above condition 

without degrading tne performance of the attached cells. 

F o r  the purposes of analysis the following guidelines have also been assumed. 

0 The satellite to which the panels attach will weight 110 pounds 

and be a homogenious three -f oot diameter cylinder. 

There will be a total of four panels which will  deploy radially 

f rom the center of gravity of the system. 

0 

0 There will be no ground deployment fixtures fo r  the panels 

nor any modification of the undeployed package dimensions 

unless it can be shown that a considerable improvement in 

the design is obtained. 

0 The a r r ay  is not to be designed for any particular voltage or  

current but rather a general system of series-parallel  

connection is to be considered. 

To ar r ive  a t  a configuration FHC considered several  designs of both flexible 

and rigid types. 

based on a preliminary analysis and examination considering: 

An elimination of all but two of each type was then performed 

0 Simplicity of design 

0 Structural integrity 

0 Ease of manufacture 

0 State-of -the-art materials 

0 Package Size 

0 Vibration characteristics 

A more detailed design was then developed and analysed fo r  each of the 

remaining concepts. A final selection was then made based on weight, 

3 



volume, reliability and the cr i ter ia  mentioned above. 

It was found that the rolled flexible concept offers the greatest  possibilities 

for  future applications of smal l  a r rays ,  because i t  does offer more  dense 

packaging than the rigid systems. 

The application of the flexible concept to  a r r ays  larger than 8 square feet was not 

considered during the study, since this is beyond the scope of the program. 

For  the smaller payloads the flexible panel is generally best if packaged 

volume and weight a r e  primary considerations. A rigid panel is best, 

however, f o r  small  payloads if the depth (four inches depth used in this 

study) is very small. 

inch diameter the flexible type is impractical because the small  radius; 

(1) creates  considerable bending loads on the rolled-up cells, and (2) increases 

the bend angle of the cell-to-cell connections. 

The study has shown that for depths l e s s  than 1.50 

. 
The study has a lso shown that the most cr i t ical  design requirement is the 

deployment under one "g" conditions. 

weight of the extension mechanism and drive system. 

weight could be achieved by deploying the panel downward. This would tend 

to  simulate the forces caused by spinning of the vehicle. 

The gravity effect increases the 

Some reduction in 
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2 . 0  DESIGN 

2 . 1  INTRODUCTION 

The deployable solar  a r r a y  design study has concentrated on developing an 

optimum system for deploying a one-foot by eight-foot a r r ay  of solar  cells 

from a minimum stored volumn. 

based on the guidelines covered in Section 1.0. 

The design c r i te r ia  used in the study is 

2 . 2  EXTENSION CONCEPTS ANALYSIS 

There a re  (2) 6-1 = 63 different combinations of translation and rotation 

possible for each member of a mechanism deploying along any arbi t rary 

path of the coordinate system shown in Figure 2.1. 

X 

For the design of the deployable array,  however, certain restrictions a r e  

imposed that reduce this number considerably. They are:  

0 The center of gravity of the extension mechanism must 

remain in the z plane 

0 The panel must l ie in a plane parallel to  the x plane when 

fully deployed 

e Panel size t o  be one-foot by eight-feet when deployed 

7 



0 The dimensions of the extension mechanism package wil l  be 

13 by 25 by four inches o r  l e s s  

0 The mechanism is to be as simple as possible. 

5 The f i rs t  restriction reduces the possibilities to  (2 

component of translation in the z direction wi l l  fall outside of the z plane. 

A l l  seven combinations of pure rotation ( u )  may be eliminated since the 

longest package dimension is much smaller  than the largest  deployed panel 

dimension, making a one piece panel obviously impossible. 

-1) = 31 since any 

It will also be noted that translation along the x axis alone is not a possibility. 

In addition, translation along the x axis and any combination of rotation is 

also impossible. Further, it is not possible to  satisfy the restriction with 

only pure translation except along the y axis. 

remain which w i l l  satisfy the conditions imposed upon the mechanism, but 

since simplicity is desired, those systems with three o r  l e s s  components 

of motion were found to  be attractive. They are :  

Therefore, fifteen possibilities 

r (Translation along y axis) 

r w (Translation along y axis, rotation about an axis 
Y 

Y’ = 
parallel to z) 

r w (Translation along y axis, rotation about an axis 
Y’ x 

parallel to x) 

r r w (Translation in the z plane, rotation about an axis y’ x’ Z 

parallel to z axis) 

r (Translation along y axis, rotation about an axis y, x’ z 
lying i n  a plane parallel to the y plane). 

8 



Only these five concepts were studied. 

For pure translation along the y axis only a self rigidizing device o r  a rigid 

sliding mechanism can be used. The self rigidizing type includes inflatable 

bags, inflatable bags with stressed stiffened skins, inflatable bags with 

hardening skins, inflatable bags with hardening cores,  foam filled bags, 

extruded foams and plastics and bags with inflated cellular cores .  

A l l  of these rigidized systems were eliminated after a survey of the existing 

state-of-the-art. 

difficulty in horizontal deployment under one "g" conditions , difficulty in 

demonstration of concepts that require special environments for deployment, 

high weight (especially the foam in place type), and high development cost. 

Possibly the greatest objection, however, is the inability to test  flight hard- 

ware prior to launch. 

The more obvious objections to these systems are:  

Other r 

tapes which assume some predetermined shape when deployed from a roll, 

2)  metallic o r  other thin sheets that can be taken from a roller o r  other 

storage device and fabricated into a stable section as it is being deployed, 

3 )  thin sheets mechanically formed during deployment into a stable section, 

and, 4) rigid sliding devices including sliding pages , telescoping boxes, 

tubes or other shapes. 

systems that were considered in this study are;  1) preformed metal 
Y 

Mechanisms that translate along the y axis with a z component of rotation 

a re  sc i ssors  o r  linkages whose plane is normal to the z axis. 

translation along the y axis with a component of x rotation a r e  linkages 

lying in a plane normal to the x axis. 

Likewise, 

A parallel o r  other four-bar linkage lying in a plane normal to  z can provide 

motion to guide an object along a path with both x and y translation and 
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z rotation. (Steam shovels o r  back hoes are examples). 

The last  motion considered can be obtained from any plane linkage deployed 

in the y direction and lying in a plane canted at some angle to  the x and y 

planes. 

but i t  has possibilities i f  the solar  panel is to be tilted with respect to the 

spin plane. 

None of the concepts chosen f o r  further study used the la t ter  motion, 

As a result of the foregoing analysis, several  extension systems were con- 

ceived and a r e  described in the following paragraphs. 

2 . 3  CONCEPT DESCRIPTION 

Following the development plan of Figure 1. 1, the concepts a r e  grouped in 

rigid substrate and flexible substrate categories. 

2 .3 .  1 Rigid Substrates 

2 . 3 .  1.1 Configuration A (Half Scissors,  Figure 2 . 2 )  

This configuration consists of four rigid panels hinged at their  ends and 

deployed along the y axis (r  The deployment motion is controlled 

by links driven by screwjacks or other l inear drive mechanisms mounted in 

the housing. 

motion). 
Y 

Solar cells a r e  mounted to both sides of the panels. 

I FIGURE 2.2 CONFIGURATION A (HALF SCISSORS) 



2 . 3 . 1 . 2  Configuration B (Full Scissors,  Figure 2 . 3 )  

The ful l  sc i ssors  design is composed of two se ts  of hinged panels forming 

two solar  a r r ay  surfaces  when deployed. 

release systems a r e  similar to the half sc i ssor  design mentioned previously. 

Cells a r e  mounted only on the outer surfaces.  

The extension, drive damping and 

FIGURE 2.3 C O N F I G U R A T I O N  6 F U L L  S C I S S O R S  7 

2 . 3 .  1 . 3  Configuration C (Sliding Plate, Figure 2.4) 

This configuration consists of three flat, solar  cell covered plates sliding 

from a cell covered box. 

before deployment. 

to that found in a filing cabinet, 

The box must initially be rotated upward 90° 

The design of the slide connecting the plates is s imilar  

FIGURE 2.4 C O N F I G U R A T I O N  c ( S L I D I N G  P L A T E )  

1 1  



2 . 3 .  1.4 Configuration D (Paral le l  Link, Figure 2.5)  

This design consists of four cell  covered plates connected by a set  of 

parallel links. During deployment the plates rotate and translate outward 

from the housing to their  final position. 

would be similar to those of Configurations A and B. 

The drive system requirements 

FIGURE 2.5 CONFIGURATION D (PARALLEL LINK) 

2 . 3 . 1 .  5 Configuration E (Telescoping Box, Figure 2 . 6 )  

The telescoping box design is a ser ies  of progressively smaller  cell 

covered boxes telescoping into each other. 

requires an initial 90 

drive is an inflatable bag within the structure. 

The deployment sequence 
0 rotation before the boxes can be extended. The 



2 . 3 . 2  Flexible Substrates 

2 . 3 . 2 . 1  Configuration F (Integrally Stiffened Substrate, Figure 2 .7)  

The stiffening of the substrate for  this design is accomplished by preformed 

sheet metal  tubes fastened to the back of a semi-flexible substrate. In the 

stowed condition, the tubes a r e  flattened and wound on a rol ler  with the cells 

and substrate. When deployed, the rods resume their  original shape and 

stiffen the panel. Two substrates a r e  required for  this system and a r e  

attached to  each other by a plate at their  deployed ends. The rotation of 

the rol lers  is synchronized to  insure uniform motion. 

F I G U R E  2.7 C O N F I G U R A T I O N  F ( I N T E G R A L L Y  S T I F F E N E D  S U B - S T R A T E )  

2.3.2.2 Configuration G (Sawtooth, Figure 2.8) 

The sawtooth arrangement i s  a variation on the stiffener principle of the 

previous device. It consists of two preformed, curved, metallic substrates 

joined to each other at their  edges by a ser ies  of interlocking tabs. 

undeployed configuration, the cells and substrates a r e  wound on parallel, 

In the 

synchronized rollers.  During deployment, a latching mechanism is employed 

to fasten the sheets to  each other. 

positioning motion. 

This concept must f i rs t  undergo a 90° 

13 



F I G U R E  2.8 F I G U R E  2.8 CONFIGURATION G (SAWTOOTH) 

2 . 3 . 2 . 3  Configuration H (Scissor-Flexible Substrate, Figure 2.  9) 

This system employs a linkage s imilar  to Configuration B to guide a se t  of 

flexible substrates from the rolls. 

because it is packaged within a space half a s  long. 

It requires twice the number of links, 

2 . 3 . 2 . 4  Configuration I (Telescoping Rod, Figure 2.  10) 

This method of deploying a set  of rolled flexible panels uses a telescoping 

rod ejected from the end of a package initially rotated into position. 

telescope lends itself well to a pneumatic erection system. 

I The 

14 



F I G U R E  2.1 0 CONFIGURATION I (TELESCOPING TUBE) 

2 .3 .  2 . 5  Configuration J (Telescoping Rail, Figure 2. 11) 

The telescoping rai l  system consists of two parallel se t s  of sliding rails 

joined by a cross  member to make them an integral unit. 

condition the rails nest inside each other. 

position pr ior  to  deployment and then the rails a r e  deployed, pulling the 

substrate with them. 

In the stowed 

The package is rotated into 

FIGURE 2.1 1 C O N F I G U R A T I O N  J (TELESCOPING R A I L )  

15 



2 . 4  REDUCTION O F  CONCEPTS 

Since it w a s  not practical to look at all of these concepts in detail, each 

design was considered for:  

St ructur a1 s oundne s s 

Simplicity of the deployment mechanism 

Adaptability to  possible drive /damper systems 

Compactne s s 

Vibration capability 

Reliability 

Ease of manufacture. 

The concepts selected for further study were Configurations A,, B, H,and I. 

2 . 5  MECHANISMS 

Only simple mechanisms were used in this study because of the requirements 

of state-of -the-art, high reliability, simplicity of operation, moderate cost, 

etc. It w a s  also considered desirable to use devices previously proven 

successful f o r  similar applications since this obviously cuts qualification 

and development time. 

The deployable solar a r r ay  mechanical system is made up of the following 

set  of mechanisms shown in the sequence of utilization: 

16 



--1 Signal 
Release i 

L-  

Restraint 
L- -  I i I 

For systems requiring 

positioning before de- , A T ’  
ployment only. Extension u 

For systems initially rotated into position before deployment, an additional 

release and a positioning mechanism is required. 

2.5.1 Release Systems 

The requirements for a release system a r e  compactness, fast reaction 

time, and production of high forces  through a short distance. Since the 

input release signal from the spacecraft can be assumed to be electrical, 

the search can be limited to either a pyrotechnic device or an electrically 

driven motor or solenoid. 

magnetic material  requirement imposed on the design. 

however, t o  incorporate a re-usable solenoid o r  a motor for the proof-of- 

principle model). 

The latter can be eliminated because of the non- 

(It may be advisable 

Some of the common pyrotechnics available a re :  

1. P i n  pullers 

2. Pin pushers 

3 .  Cable cutters 

4. Bolt cutters 

17 



5. Explosive nuts 

6. Explosive bolts 

7. Shaped charges 

8. Pyrofuse 

When dealing with solar  cells  and other delicate e lec t rmic  equipment 

it is considered wise t o  stay away from those systems that tend to contami- 

nate adjacent components. Therefore, all but self-contained reactions were 

eliminated. 

small  percentage of the overall design. 

subsystem was delayed until the major systems were firm. 

chosen was a redundant set  of cable cutters that release the drive linkage 

and allow the substrate rol lers  to turn. 

The weight and volume of release systems are generally a 

For that reason the design of this  

The technique 

2 . 5 . 2  Drive System 

The input signal to  the drive system is mechanical, provided by the release 

system. The energy for  deployment wil l  be mainly kinetic energy resulting 

from spacecraft rotation. 

systems points to storing the remaining required energy a s  a compressed 

gas, a gas generator, o r  in a mechanical spring. For deployment concepts 

chosen for  further study, three a r e  of a sc i ssors  o r  s imilar  linkage system 

and w i l l  require a long straight motion for deployment. 

storage methods discussed, only a piston o r  a tension spring can provide 

th i s  type of motion directly. 

rotational motion which must be transformed into l inear motion. 

be done with 1) a motor spring o r  a i r  motor combined with a screwjack, o r  

A survey of existing state-of-the-art driving 

Of the energy 

A motor spring o r  air motor wi l l  provide 

This can 

I 2) a motor spring or a i r  motor combined with a shaft upon which a sl ider is 

driven by a chain or  cable system. 

18 



A similar driving motion is needed for  the telescope arrangement, the 

difference between the two being that the motion of the telescope is perpen- 

dicular to the linkage drive and must be of a considerably longer stroke. 

A trade-off matrix of the selected deployment concepts and the drive mecha- 

nisms mentioned above is shown in Table 2. 1. 

F rom this matrix study, it was concluded that the motor spring/ jackscrew 

drive system is most desirable for Configurations A, B, and H. The dis- 

advantages of this system a r e  1) the low torque available, 2)  the side loads 

on the screws and the gearing, and 3 )  the requirement for synchronizing 

mechanisms. 

completely, they can be overcome. The only need for torque on the screws 

is during static ground deployment tes t s  since the rotation of the spacecraft 

provides the bulk of deployment energy. This will, however, produce slow 

deployment velocity during a non-spin condition. Side loading of screws in 

most cases is undesirable but since the loads a r e  low, it w a s  felt the selec- 

tion is justified. Gearing and synchronizing devices are necessary for all 

the linkage concepts and, because they a r e  compact, cannot be considered 

di s advantageous . 

Although it is not possible to  eliminate these disadvantages 

The pneumatic cylinder w a s  the drive system chosen for Configuration I. 

Although th is  system requires extra components for gas storage, system 

control, and leakage, the required stored volume does not compromise the 

design. This is t rue because the telescoping rod does not package very 

efficiently and ample volume is available in the structure. 

system w i l l  use highly reliable and redundant components. 

made acceptable by using an inert gas. 

The control sub 

Leakage can be 

19 



CENTRIF ICAL  BRAKE 

0 M A Y  NEED GEAR TRAIN 

FOR SPEED INCREASE 

0 W I D E  CHOICE OF ADJUSTMENTS 

AVA I L A B  L E  

0 ADJUSTMENT S I M P L E  

0 W I D E  SPEED RANGE 

0 OPERATING CHARACTERISTICS 

M A Y  CHANGE W I T H  ENVIRONMENTS 

0 R E P E A T A B I L I T Y  PROBABLY 

GOOD FOR S A M E  OPERATING 

CONDITIONS 

0 S I M P L E  PROVEN P R I N C I P L E  

0 S M A L L  CONTAMINATION 

0 FORCE/VELOCITY RATIO IS 

GOOD 

0 SHORT DEVELOPMENT T I M E  

COST S E E M S  REASONABLE 

HYDRAULIC OR GAS 

CYLINDER 

~ ~~~~ 

0 LEAKAGE MAY B E  A PROBLEM 

0 RESIDUAL DRAG DUE TO 

CLOSE F I T T I N G S  AND 

1 0 1  RINGS 

0 ADJUSTMENT D I F F I C U L T  

0 OPERATING CHARACTERISTICS 

M A Y  CHANGE W I T H  T E M P  

0 FOR ANY REASONABLE STROKE 

CYLINDER IS HEAVY 

0 S I M P L E  AND PROVEN P R I N C I P L E  

0 I T  HAS DESIRABLE 

FORCE/ VELOCITY RATIO 

0 DEVELOPMENT AND T E S T  M A Y  

T A K E  CONSIDERABLE T I M E  

0 MODERATE COST 

0 NOT E A S I L Y  PACKAGED 

0 IF U 

SUB 

OF C 

W I S  

8 REP 

USE 

0 OPE 

VAR 

0 ADJ l  

O F  1 

0 MAY 

OBT. 

8 APPI 

WE11 

0 HIGF 

0 NEE) 

M E N  

0 FOR( 

TOO 

M A T  

INE> 



P 
S T I C K T I O N  T A P E  

S E D  A S  P A R T  O F  

S T R A T E  W I L L  U S E  P A R T  

: O L L E C T O R  A R E A ,  O T H E R -  

E V E R Y  C O M P A C T  

E A T A B I L I T Y  A F T E R  L O N G  

Q U E S T  I ON A B  L E  

3 A T l O N  C H A R A C T E R I S T I C S  

W I T H  E N V I R O N M E N T  

I S T M E N T  B Y  R E P L A C E M E N T  

' A P E  

N O T  B E  A B L E  T O  

\ I N  S U F F I C I E N T  R E S T R A I N T  

I A R S  T O  B E  V E R Y  L I G H T  

5 H T  

I S T A R T I N G  L O A D S  

J C O N S I D E R A B L E  D E V E L O P -  

T T I M E  

:E / V E L O C I T Y  R A T I O  NOT 

A T T R A C T 1  V E  

E R I A L S  M A Y  N O T  B E  

P E N S I V E  

F R I C T I O N  B R A K E  

0 C H A R A C T E R I S T I C S  C A N  VARY 

GREATLY W I T H  E N V I R O N M E N T  

0 V E R Y  S E N S I T I V E  T O  

C L A M P I N G  F O R C E  

0 H I G H  S T A R T I N G  T O R Q U E  

L O W  W E I G H T  

0 R E P E A T A B I L I T Y  M A Y  V A R Y  

DUE T O  W E A R  0 3  T E M P E R A T U R E  

P R O V E N  S I M P L E  D E S I G N  

0 L O W  C O N T A M I N A T I O N  

0 MAY N E E D  G E A R I N G  F O R  

S P E E D  

F O R C E  V E L O C I T Y  C H A R A C T E R I S T I C S  f 
N O T  D E S I R A B L E  

0 S H O R T  D E V E L O P M E N T  AND T E S T  

S C H E D U L E  

0 L O W  C O S T  

C O M P A C T  

F L U I D  C O U P L I N G  

0 L E A K A G E  M A Y  B E  A P R O B L E M  

0 DRAG O F  S H A F T  S E A L  C A U S E S  

H I G H  I N I T I A L  L O A D  

0 MAY N E E D  G E A R I N G  F O R  S P E E D  

I N C R E A S E  

0 P O S S I B L Y  T E M P E R A T U R E  S E N S I T I '  

0 D I F F I C U L T  T O  A D J U S T  

0 R E P E A T A B I L I T Y  M A Y  C H A N G E  W I T 1  

T E M P E R A T U R E  O F  F L U I D  

W O U L D  N E E D  C O N S I D E R A B L E  D E V E  

0 D E S I R A B L E  F O R C E  / V E L O C I T Y  

R A T I O  

R E L A T I V E L Y  H I G H  W E I G H T  

0 S T R A I G H T F O R W A R D  D E S I G N  

0 C O N S I D E R A B L E  D E V E L O P M E N T  

A N D  T E S T  T I M E  R E Q U I R E D  

0 R E L A T I V E  H I G H  C O S T  

S A T I S F A C T O R Y  P A C K A G I N G  



TABLE 2.1 

'E 

I 

- 0 P M E N  

- I f  ' 

MOMENTUM WHEEL 

0 M A Y  INTERFERE W I T H  THE 

DYNAMICS OF THE VEHICLE 

0 W I L L  NEED SPEED INCREASE 

0 WEIGHT M A Y  B E  EXCESSIVE 

0 NEEDS BRAKE TO STOP WHEEL 

AFTER DEPLOYMENT 

0 ADJUSTMENT POSSIBLE 

0 LOW STARTING LOAD 

0 REPEATS I T S E L F  FOR A L L  

CONDITIONS 

0 W I D E  SPEED RANGE 

0 S I M P L E ,  PROVEN DESIGN 

0 NO CONTAMINATION 

0 UNDESIREABLE FORCE VELOCITY / 
R A T  IO 

0 SHORT DEVELOPMENT AND TEST 

REQUl R E M  ENTS 

0 LOW COST 

0 SATISFACTORY PACKAGING 

ESCAPE M ENT 

0 ONLY SLOW DEPLOYMENTS P O S S I B L E  

0 EASY TO ADJUST SPEED 

0 I N I T I A L  MOTION REQUIRED TO START 

THE BALANCE WEIGHT 

0 GENERALLY USED FOR L O W  LOADS 

STRENGTH M A Y  B E  A PROBLEM 

0 I N T E R M I T T E N T  MOTION 

0 WEIGHT SHOULD B E  C O M P E T I T I V E  

0 PROVEN DESIGN 

0 VERY G O O D  R E P E A T A B I L I T Y  UNDER 

A L L  CONDITIONS 

NO CONTAMINATION 

0 REASONABLE FORCE VELOCITY RATIO 

0 DEVELOPMENT T I M E  COULD B E  
/ 

LENGTHY. T E S T  T I M E  PROBABLY SHOR- 

0 MODERATE COST 

0 REASONABLE SPACE REQUIREMENTS 
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2.5 .3  Damping System 

The damping system controls the rate  at which the solar  panel deploys. 

initiation of this  system is mechanical and occurs when the drive system 

begins to function. Unlike the drive system, the damper system must 

dissipate energy rather  than u s e  it. This dissipation of energy can be 

achieved in several  ways. 

flow, "stiction", o r  material damping. 

The 

It can be accomplished through friction, viscous 

For all of the deployment concepts selected for further study, the damper 

installation requirements were found to be quite similar.  On the rigid type, 

the damper wil l  be attached to the screwjack because of packaging consid- 

erations and wil l  be a rotary damper. 

to fasten the damper to the substrate roller to prevent the substrate from 

billowing outward during deployment. 

On the flexible concepts it is necessary 

This also wil l  require a rotary damper. 

The advantages and disadvantages of each damper considered have been 

tabulated in  Table 2 .2 .  

following de sir able char act eri  st ic s : 

From this table, a damper was chosen based on the 

Strength to  take load 

Wide operating range 

Operating characteristics independent of environment 

Ease of adjustment 

Minimum weight 

Simplicity of design 

Reliability 

Proven principle of operation 

Non-contamination of adjacent mechanisms 
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TABLE 2.2 

C O M P R E S S I O F  

S P R I N G  

VDED L E N G T H  V S .  

R E S S E D  L E N G T H  

. A R G E  F O R  

? A B L E  L O A D S  

N O T  P A C K A G E  W E L L  

5 A D D I T I O N A L  
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nYNCHRONI Z A T I O N  
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R E P  E A T A B  I L I T Y  

M A G N E T I C  S P R I N G S  

3T U S U A L L Y  A S  

I E N T  D U E  T O  L O W  

. E S .  

M O T O R  S P R I N G  - 
P U L L E Y  A N D  C A B L E  

( O R  C H A I N  A N D  S P R O C K E T  ) 

S P R I N G  P A C K A G E S  W E L L  

C A B L E  R I G G I N G  D I F F I C U L T  

TO P R O V I D E  S Y N C H R O N U S  

D R I V E .  

C A B L E  S Y S T E M  N O T  A 

P O S I T I V E  D R I V E  

D I F F I C U L T  TO R I G  

C A B L E S  A N D  P U L L E Y S  IN 

S P A C E  A V A I L A B L E  

C H A I N  S Y S T E M  N O T  

P R A C T I C A L  

L O W  T O R Q U E ,  W O U L D  

P R O B A B L Y  N E E D  G E A R I N G  

L I M I T E D  A D J U S T A B  I L I T Y  

L O W  C O S T  

O P E R A T I N G  C H A R A C T E R  l S T l  CS 

I N D E P E N D A N T  OF E N V I O R N M E N T  

N O  C O N T A M I N A T I O N  

G O O D  R E  P E A T A B  I L I T Y  

NON - M A G N E T I C  S P R I N G S  

H U R T  E F F I C I E N C Y .  
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R E Q U  I R E D  

0 H I G H  F R I C T I O N  
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I N D E P E N D A N T  OF E N V I R O N M E N T  

N O  C O N T A M I N A T I O N  
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H U R T  E F F I C I E N C Y .  

H I G H  F R I C T I O N  I N  

‘=YSTEM 
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0 Unlimited angular motion 

0 

0 Non-Magnetic materials 

Force  at least  proportional t o  velocity 

0 Short development and test t ime 

0 Reasonable cost 

0 Compactness 

Except for  uniform performance under different envim nmental conditions, 

especially vacuum, the centrifugal brake is the obvious choice. It is felt, 

however, that through testing, the performance of the device can be  pre-  

dicted with sufficient accuracy to  insure its reliable use. 

2 .5 .4  Stop and Locking Mechanism 

Stop and locking mechanisms a r e  generally very simple and their  nature 

depends upon the individual configurations with which they a r e  used. 

felt, therefore, that the detail design would be best  covered on the final 

recommended design configuration on which it would be used, ra ther  than 

perform multiple design efforts on the several  possible configurations. 

- 

It w a s  

2 . 6  STRUCTURE 

The purpose of the housing on the deployable solar  a r r ay  is to support the 

mechanisms and the substrate fo r  vibration, spin, launch, and handling 

loads. 

out binding of the mechanisms. 

state-of-the-art design that is relatively easy t o  manufacture. 

of dissimilar metals must be used to  alleviate the problems of galvanic 

action and differential expansion. Materials for  the structure must be non- 

magnetic, compatible with the space flight environment, and should possess  

The structure must be rigid enough to provide for deployment with- 

The structure selected should be lightweight, 

A minimum 
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a high strength-to-weight ratio. 

the housing a r e  sheet metal, machined parts, honeycomb, trussworks, 

laminated metals and plastics, o r  combinations of these methods. The 

following paragraphs list the considerations for  selecting methods of fabri- 

cation. 

The most likely types of construction for  

Construction of Configuration H employs machined end plates s imilar  to 

A and B. Material for  the sides and back a r e  stamped sheet metal stiffened I 

Flat sheet metal spans a r e  inadequate f o r  vibration environments unless 

stiffeners a r e  added. 

of overlap of webs and fittings and can be stiffened with intragal machined 

stiffeners. They are, however, relatively expensive. Honeycomb structure 

is generally light, but is sometimes difficult to  attach to  adjacent parts.  As 

the housing of the array, it also consumes a great amount of space. 

with t r u s s  works are usually found in lightweight joint design. 

s t ructures  require more expensive tooling. 

Machine bulkheads a r e  made lightweight by elimination 

Problems 

The laminated 

The methods of fastening include: welding, which may cause distortion; 

bonding, which requires expensive tooling, but gives a uniform joint and is 

ideal for thin sheets; and mechanical fasteners, which include screws, 

bolts, rivets, and similar devices. 

Considering these aspects of construction, s t ructures  for  the four configur- 

ations studied were chosen. 

thirteen inches), the ends of the structure will  be machined par ts  o r  sheet 

metal with attached fittings. 

sheet metal with lightening holes o r  t ru s s  type cutouts. 

cutout honeycomb o r  possibly a sheet metal stamping. 

partially across  the open front wil l  be required a s  part of the release 

system. 

For  Configurations A and B (four inches by 

The sides wi l l  be honeycomb o r  stiffened 

The back wil l  be  

A hold-down plate 

This will  be a honeycomb o r  stamped sheet metal panel. 
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with lightening holes and/or beads. The hold-down s t rap  o r  plate across  

the front of the box wi l l  be  also a stiffened sheet. 

Fo r  Configuration I, the construction chosen w a s  machine par ts  in  the a rea  

of the rol lers  and gears  with the rest of the side panels of stiffened sheet 

metal. The 2 5  inch x 13 inch dimension on the box will be stiffened sheet 

metal o r  fiberglass reinforced plastic. 

attaches to the telescope will be sheet metal. The preliminary weights and 

volume for these four configurations were used for the trade-off study and 

a r e  tabulated in Table 2 . 3 .  

The end cap of the box which 

2.7 SUBSTRATE DEVELOPMENT 

As noted in Figure 1. 1, the design of cel l  attachment follows two courses; 

attachment to rigid substrate, and attachments to  flexible substrate. Work 

on the rigid type wil l  be discussed first. 

2 . 7 . 1  The stated objective of the study is to a r r ive  at a general se r ies -  

parallel cel l  connection. From previous development, F H C  has found the 

Z" bar  concept shown in Figure 2 . 1 2  to be the most satisfactory design 1 1  

and therefore the study was limited to  this concept. 

a r e  in the 0.01 to  0.02 range. 

The gaps between cells 
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Materials examined for the Z bars  have been thin metal foil of 270 si lver  

content, pure silver, and brass.  

favorable. 

(2700-570) alloy. 

To date the 10070 silver has proved most 

The solder found to  give the best  results is a lead-tin-silver 

A fabrication technique developed f o r  the rigid substrate has been abstracted 

f rom our previous in-house work and is described in the following paragraphs. 

Groups of solar cells, selected in accordance with dimensional tolerance 

requirements for  a specific cell grouping, a r e  placed in a locating and 

soldering fixture. A preformed, pre-cut photo etched 0.003 inch s i lver  

"Z"  tab and a 0. 003 inch silver ribbon conductor a r e  located in the fixture 

in position for soldering to the bottom surface terminals of the solar  cells. 

The ribbon conductor and the "Z" tabs a r e  soldered to  the solar  cells, using 

a lead-tin-silver (270-570 silver) solder. 

The resulting cell grouping (Figure 2 . 1 2 )  is the fundamental element used 

in application of the solar  cells to the module substrate. 

a s  the common terminal f o r  subsequent electrical  connection of the cell  

grouping to other s imilar  elements. The ribbon conductor lends mechanical 

stability to the grouping and also provides the means of electrical connection 

between the end elements in adjacent rows of elements. 

rication procedure for  the module structural  substrate, a 0.030 lb/ft 

of FM-1000 adhesive (including sc r im cloth) is bonded to the skin of the sub- 

s t ra te  to provide a dielectric and mechanical b a r r i e r  between the solar cells 

and the substrate. 

subsequent dielectric /mechanical coating sequence and greatly reduces the 

probability of damage to  the bonded substrate. 

The "Z"  tab acts  

As part  of the fab- 

film 2 

This approach entirely eliminates the necessity for a 
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The module structural substrate is then mounted in the bonding fixture. 

FM-1000 coated surface is cleaned (solvent wipe) and primed (A4004) for  

silicone adhesive. Catalyzed RTV-40 silicone adhesive is then applied onto 

the primed surface to the prescribed depth. A 0.005 inch glass  fabric s c r i m  

cloth, impregnated w i t h  RTV-40 silicone adhesive is then laminated onto the 

uncured adhesive layer previously applied. 

additional ba r r i e r  to short circuiting between solar  cells and substrate and 

improves the silicone adhesive tear resistance. 

The 

The s c r i m  cloth serves  as an 

Final adjustment of the now reinforced adhesive layer is performed to  

remove any trapped a i r  and to  achieve the desired adhesive thickness. Cell 

groupings, which have been checked for adequacy of functional performance, 

a r e  ultrasonically cleaned preparatory to bonding. 

aligning fixture, the cel l  groupings a r e  placed in position on the adhesive 

coated surface of the module substrate and seated in the adhesive by appli- 

cation of modest pressure. 

ature under this pressure to  assure  positive bond surface contact. 

completion of adhesive cure, any excess is removed mechanically. Electri-  

ca l  connection between cell groupings is made via the " Z "  tabs o r  ribbon 

conductors a s  appropriate, employing the same soldering procedures used 

in fabricating the cell groupings. 

of functional performance. 

Using a locating and 

The adhesive is allowed to  cure  at room temper- 

Upon 

The assembly is now checked for  adequacy 

Cover glasses for the solar  cells a r e  ultrasonically cleaned and the surfaces 

of the solar  cells a r e  cleaned by means of a light solvent wipe. 

glasses  a r e  prefitted and then applied to the solar  cells and held under modest 

pressure until the adhesive is cured. 

wrapped with polyethylene sheeting to protect all surfaces prior to final 

assembly. Figure 2 . 1 3  is a photograph of this development. 

Cover 

The entire assembly is then carefully 
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FIGURE 2-13 RIGID SUBSTRATE DEVELOPMENT 

CONFIGURATION r ' X  1 1 CONFIGURATION I l Y ' I  I CONFIGURATION l l z  I 

I 1 
r-- -;> ---,I r - -  -:j r - -  

L-- -A L-,  
END V I E W  

FIGURE 2. 14 THREE EXPERIMENTAL CONFIGURATIONS FOR 
INTER-CELL CONNECTION I N  A S E R I E S  - 
PARALLEL ARRANGEMENT 
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2 7 2 Development of Flexible Arrays 

It has been determined that in addition to those requirements of Section 1.0, 

a practical flexible solar cell a r r a y  must be flexible only in one direction, 

and possess tensile strength sufficient to  sustain the necessary loads during 

deployment. In addition, the electrical interconnection of the cells (in the 

deployment direction) must be capable of flexing through an angle of approxi- 

mately 45' and permit the closest feasible spacing of solar cells. To sa t i s fy  

these requirements, consideration has been given during the development 

effort to  the details of design, materials selection, fabrication feasibility, 

and functional reliability of a practical flexible solar  cell a r r ay  for space- 

craft  * These studies a r e  described in succeeding paragraphs. 

In order  to assess some of the practical manufacturing aspects of the flexible 

solar  cell array, development work was  undertaken which resulted in the 

fabrication of several  small  arrays.  

clearly the feasibility of the selected design concepts a s  well as to provide 

information for materials selection and fabrication methods 

These i tems have served to  demonstrate 

Various design configurations were considered, each of which met, to some 

degree, the basic requirements. From the fabrication standpoint, the most 

important design concept proved to  be the inter-cell electrical  connection. 

Three configurations were selected for t r ia l .  

using two of them. 

The three designs a r e  shown in Figure 2.14.  

Small a r rays  were then made 

Soldered inter-cell  connections were made in each case.  

2 . 7 . 2 . 1  Substrate Concepts 

Configuration X employs a hat-section made of 0.001 inch b r a s s  o r  0,0015 

inch beryllium - copper foil, which was termed a hinge strip.  

materials were used successfully. 

the detail parts and the completed sample solar  cell  a r r a y  made using 

Both of these 

The photograph of Figure 2.15 shows 
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Configuration X.  

hat section hinge strips;  the latter also connects adjacent rows in ser ies .  

Each row contains four cells connected in parallel by the 

Two flexible substrate materials w e r e  used i n  combination with the hat 

section hinge strip. 

and mylar film. 

These a r e  silicone rubber impregntaed fiberglass fabr ic  

Both substrates were functionally satisfactory. 

Since solar cells having both terminals on the bottom face w e r e  not available 

a b r a s s  "wrap-around" s t r ip  w a s  soldered to  each cell. 

the sketch in Figure 2 . 1 6 .  

This is shown by 

1 1  Configuration Y consists of a 

wire cloth. 

the action on the individual w i r e s  during roll-up and deployment wi l l  consist 

of torsion, in  p a r t ,  ra ther  than bending only. This concept proved to  be use- 

l e s s  because the fine weave of the cloth prevents the individual wires f rom 

twisting. 

because it acted as a wick to  the liquid metal, decreasing its flexibility. 

A.fter experimenting with two s izes  of wire cloth (60 mesh and 200 mesh), 

this configuration w a s  abandoned. 

Z" section s t r ip  made from fine-weave b r a s s  

This material  is flexible and the s t r ips  a r e  bias cut in order  that 

The very fine mesh wire cloth w a s  most difficult t o  solder properly 

Configuration Z proved easy to fabricate. 

between cells. The small  soldered w i r e s  connect the N terminal  of a given 

cell  t o  the P terminal of a cell  in the adjacent row, as shown in Figure 2.14.  

A n  unsuccessful attempt was made to use soft-temper flexible stranded wire, 

but wicking of the liquid solder occurred. 

tended to  become unstranded during handling. 

0.020 inch diameter si lver coated soft copper wire and 0.016 inch diameter 

cupro-nickel w i r e  (Driver Co. Alloy 180), were used successfully. 

It consists of w i r e  connections 

The short  pieces of the wire also 

Two kinds of wire, solid 
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WRAP AROUND S T R I P  

S T R I P  SOLDERED 

TO I r N I r  CONTACT 

// 

I - -  \ \  \ \ \ - -  
I F R P  S T A Y  

S O L D E R  R T V  ADHESIVE HINGE SOLDERED 

JOINT BETWEEN HINGE F L E X I B L E  SUBSTRATE TO P CONTACT 
AND WRAP-AROUND S T R I P  PRESSURE S E N S I T I V E  ADHESIVE 

F L E X I B L E  F O A M  C E L L  CUSHION 

FIGURE 2.16 CONFIGURATION FOR ATTACHING SOLAR CELLS To SUBSTRATE 

~ l W ~ ~ P - ~ ~ O U ~ ~ ~  I 

(BOTTOM T E R M I N A L )  

T Y P E  SOLAR CELL 

HINGE AND T E R M I N A L  DHES I V E  
F L E X I B L E  F O A M  C E L L  CUSHION 

FIGURE 2.17 CONFIGURATION F O R  ATTACHING WRAP-AROUND TYPE 
C O N T A C T S  ON BOTTOM) SOLAR CELLS TO SUBSTRATE 

(BOTH TERMINAL 
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A sample-size solar cel l  array,  s imilar  to that shown in Figure 2.15 was 

constructed by using the wire-type inter-cell connection, but appears to be 

l e s s  desirable than hinge s t r ip  connection in at least  two significant respects.  

Configuration Z a r ray  is not a s  flexible, wil l  not bend around the rol ler  

as  readily, and the wires a r e  yielded by the rolling-up action causing possible 

fatigue. Less  cell-to-cell spacing was  found to be required for  Configuration 

Z .  

investigated. 

It w a s  concluded that Configuration X was the most desirable of those 

2 . 7 . 2 . 2  Description of Configuration 

The configuration selected for additional studies is an arrangement of solar  

cells  bonded to an epoxy-fiberglass laminate which is in turn bonded to a 

mylar film substrate (Figures 2.15 and 2.16) .  

used on this design. 

edge and onto the bottom of the cell, producing both an N and a P terminal on 

the bottom. If this cel l  is not available, a conventional cell  can be converted 

by means of a brass  channel soldered to the top terminal strip, wrapped over 

the edge of the cell and the fiberglass stiffening member, and then bonded to 

the bottom of the fiberglass laminate. 

beryllium - copper "hinge" s t r ip  connecting the P layer of one row of cells 

to the N layer of the adjacent row. This hinge makes a parallel connection 

between cells in a row and makes a se r ies  connection between rows. 

addition to providing electrical  contact between rows, the beryllium copper 

hat sections supplements the stiffness provided by the epoxy-fiberglass 

strips.  The hat section shape was also chosen to provide the flexibility 

necessary to wrap the a r ray  onto a small  diameter roller.  

1 1  Wrap-around" cells shall be 

The terminal for the N layer  is brought down over the 

The electrical  connections use a 

In 

A thin sheet of flexible foam is attached to the side of the flexible substrate 

opposite the solar cells. This foam has a pressure sensitive adhesive fi lm 

on one side which allows attachment to the substrate. 
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2 . 7 .  2 . 3  Flexible Substrate Material Selection 

Three materials were considered for this application: Silicone rubber coated 

glass fabric, mylar, and a polyimide film (H-film). All give good service 
in the space environment because the outer surface of the flexible substrate 

wil l  be covered with the solar cells and their  supports. 

fabricated using both the mylar and the silicone rubber. 
coated fabric is much heavier than either the mylar or  the H-film. 
the H-film is slightly more stable in the space environment than the mylar, 

it was not available to be used in the sample substrates during Phase I of the 

program. 

Sample a r r a y s  were 

The silicone rubber 
Although 

2 . 7 . 2 . 4  Solar Cell Stiffener 

It was determined that the solar cells should be supported normal to  the 
direction of the a r r a y  deployment and in the plane of the a r ray  by a rigid 
member approximately the width of a solar cell to  decrease the bending 
s t r e s s  in the cell while rolled. 
non-magnetic and preferably non-conductive. 

The material  used for this member must be 

The various metallic materials investigated included aluminum, magnesium, 
beryllium copper, beryllium, and titanium. The beryllium stiffener is the 

lightest structure for a given thickness. 
considered to be too undesirable to allow practical application to the design. 

However, i t s  cost and toxicity were 

Although metallic materials result in the lightest weight for  the stiffeners, 
i t  was tentatively decided that epoxy-fiberglass should be used fo r  these 
members. 
material  a s  well a s  Fairchild Hiller's experience in the fabrication of thin 

glass laminates. 
ably the possibility of shorting and eliminates the necessity for the additional 
insulation bar r ie r  normally provided. 
permits direct bonding of the cell to the stiffener without the rubber im-  

pregnated fabric generally used. 

This decision was based on the non-conductive properties of the 

The use of the non-conductive material  reduces consider - 

The use of the fiberglass laminate 
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Figure 2.16 shows the relationship of these stiffeners to  the solar  cell array.  

Figure 2.15 (a) shows the solar  cells about to be bonded to  the stiffener. 

2.7.2.5 Solar Cell Interconnects 

Intercell connection is accomplished with beryllium copper foil formed into 

a hat section. 
using beryllium copper foil. 
beryllium copper was a slightly better selection because of bending stiffness 

and fatigue life. 

One sample a r r ay  was fabricated using b ras s  foil and another 

Although the former  performed satisfactorily, 

Figure 2 .16  shows the configuration of these solar  hinge s t r ip  interconnects. 

Figure 2.15(b) shows the hinge s t r ip  about to be attached to two solar  cell 

submodules. 

2.7. 2.6 Solar Cell Cushion 

In order  to protect the individual layers  of the cells from vibration damage 
and abrasion when in the stowed condition on the roller,  a thin layer of 
flexible urethane foam is interleaved between layers.  
obtained with a pressure sensitive adhesive backing for  attachment to the 
flexible substrate. 
Figure 2.15(d) shows the solar cell a r r ay  with the flexible foam attached to 
the substrate. 

The flexible foam is 

See Figure 2.16 for descriptions of this installation. 

2. 7.2.8 Manufacturing Plan - Solar Cell Array 

The solar cell stiffeners a r e  fabricated using epoxy resin (MIL-R-9300) and 
181 glass fabric (MIL-P-9084). 
approximately 100 ps i  and 350°F. 
approximately one cm wide and twelve inches long. 

The laminate is cured in an autoclave at 
After cure the laminate is cut into s t r ips  
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The solar  cells a r e  then bonded to the fiberglass stiffeners using General 
Electric RTV-40 silicone rabber adhesive. The fiberglass stiffeners and 
the bottom surface of the solar cells a r e  primed with SS-4004 silicone pr imer  
pr ior  to application of the R'I'V-40. 

If wrap-around solar cells a r e  not available, standard solar cells shall be 
reworked per Section 2 . 7 . 2 . 2 .  

Cover glass is bonded to the solar cells using LTV 602 adhesive. 
adhesive has cured, the cover glass is then coated with a stripable coating 
for protection during the following assembly operations. 

When this 

Hat section solar cell  interconnxts  a r e  formed from pretinned beryllium 
copper 0.001" s t r ip  and soldered to  the bottom terminals of the solar  cells 

using 60/40  solder. The cells are  positioned such that the interconnect joins 
N and P layers of adjacent rows of cells - thus affording a se r i e s  connection 
between rows - and a parallel connection of cells in the same row. 

The row of cells is then bonded to the flexible substrate using RTV-40. 

under surfaces of the row and the substrate a r e  primed with SS-4004 silicone 

pr imer  before application of the RTV-40. 

The 

When the joint between the row and the substrate has cured, the flexible foam 
is attached to the inner surface of the substrate. 

After assembly of the completed solar  cell a r r ay  onto the take up roller and 
attachment of the extension mechanism, the stripable coating is removed 

from the cover glass and an isopropyl alcohol wash given the entire array.  

2 .7 .2 .9  Test Performed on Experimental Arrays 

A test  apparatus was constructed which permitted a simulated deployment 
tes t  to be performed on the three experimental arrays.  This apparatus is 

shown in Figure 2. 18. It consists of a 1. 5 inch diameter rol ler  onto which 
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F I G U R E  6 ( ~ )  UNROLLED P O S I T I O N  FIGURE 6 ( ~ )  ROLLED UP P O S I T I O N  

F I G U R E  2 . 1 8  PHOTOGRAPHS O F  S I M U L A T E D  DEPLOYMENT TEST APPARATUS 
FOR EXPERIMENTAL SOLAR CELL ARRAY 

FIGURE 2.19 P H O T O G R A P H  O F  TEST APPARATUS U S E E ’  T O  DEMONSTRATE T H E  F U N C T I O N A L  

C A P A B I L I T Y  OF T H E  E X P E R I M E N T A L  S O L A R  C E L L  ARRAY 
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the a r r ay  was repeatedly wound and unwound. 

support a 10 pound static load throughout the simulated deployment. 
additional weighted container shown in Figure 2 .18  was used to  counter- 

balance the rotational force.  A digital counter was used to  indicate auto- 
matically the number of simulated deployment cycles. 

The substrate was made to  

The 

The simulated deployment test was performed 500 t imes on each of the three 

experimental solar  cell arrays fabricated. 
500 cycles of deployment without serious physical effects caused by the test  

itself. 
nectors appeared to  be accentuated by the flexing. 
s t r ips  were hand formed, they sustained some damage where efforts were 
made to produce sharp radii in the hat section with sharp-edged tools. 

These defects were noted beforehand. Nevertheless, it was deemed advis- 

able to proceed with the cyclic deployment test  since the cell modules 
functioned quite satisfactorily. 
lium-copper hinge s t r ips  in the a r ray  fabricated with that material. 

defects appeared to  be slightly aggravated by the deployment test. A third 
crack appeared after 100 cycles in the test. However, it may be expected 
that either b ra s s  o r  beryllium-copper may be formed with the aid of more 
suitable tools into hinge strips that w i l l  be free of cracks and w i l l  perform 
satisfactorily in repeated deployment tes ts .  
third a r r ay  were not damaged in the test .  
inflexibility of this array,  the 10 pound force on the 3. 25 inch wide substrate 
was quite adequate to straighten the a r r ay  completely during each deployment 

cycle. 

A l l  three a r r ays  withstood the 

Certain defects which were already present on the cell  inter-con- 

Because the b r a s s  hinge 

Two small  cracks were noted on the beryl- 
These 

The wire connectors in the 
In spite of the apparent relative 

There appeared to be no significant difference in  the performance of the two 
substrates used, 0. 002 inch thick mylar film and 0. 010 inch thick silicone 
rubber impregnated fiberglass. Both were quite satisfactory. 

A simple test was devised to demonstrate that the solar cell a r rays  function- 
ed properly both before and after the cyclic deployment test. It consisted of 

a light source and a d-c output voltmeter a s  shown in Figure 2 .19 .  In each 
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case the position and distance from the light remained fixed. 

was used to ascertain that the incident energy remained substantially con- 

stant. 
well after sustaining 500 cycles of deployment a s  they did before the la t ter  

test. 

A light meter  

In a l l  cases  the experimental solar  cell a r r a y s  functioned equally 

2 .8  TRADE -OFF DISCUSSION 

Following the outline of Figure 1.1 the trade-off w i l l  first select a flexible 
substrate design and then a rigid substrate design. 
made between the flexible and rigid substrate. 

A selection w i l l  then be 

For  this trade-off, only weight, occupied volume, reliability, cost and power- 
weight ratio need be considered since all  of the configurations meet the 
specifications stated in Section 1.0. 

been taken for evaluation f i rs t .  

B. 

The rigid substrate has arbi t rar i ly  

These a r e  configuration A and configuration 

For  configuration A the power-weight ratio is affected by the total weight of 
the structure, the packaging efficiency of the cells and a shadowing factor 
due to the drive links. 
the worst shadowing condition. The same factors, except shadowing, affect 
configuration B. 

s t ra te  hinges which cut down the total cell area.  
mately 1%. 
geometry only). 

This shadowing factor has been determined a s  370 for 

In addition, configuration B has twice the number of sub- 

This amounts to  approxi- 
The packing efficiency of cells for both a r e  . 9 3  (based on cell 

The power-weight trade-off can be made a s  follows: 

A = Total a rea  of substrate 

AA = 

RA = AA 

WA Usable a rea  of configuration A substrate 
= (. 93) (. 97) A 

RB = A~ A = Usable a rea  of configuration B substrate 
B 

wB = (. 93) (. 99)A 
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RA = Power-weight ratio of configuration A 

RB = Power-weight ratio of configuration B 

WA = Weight of configuration A = 1 3 . 8 3  lb. 

= Weight of configuration B = 1 4 . 8 3  
wB 

R - A = .97A (14 .51 ) ( .  93)  

RB .99A (13 .83) ( .  93) 
= 1 . 0 3  

This shows configuration A t o  be 3% more efficient. 

liability between configurations A and B is difficult t~ assess .  
determination that can be made is that B is slightly less  reliable because of 
the greater  number of par ts  in the system. The volumes of both configura- 
tions a r e  identical. 
more parts. The selection of the rigid substrate of configuration A is made 
on the basis of a slightly better power-weight ratio, better reliability factor, 

and possibly, a slight reduction in the total cost. 

The difference in re -  
The only 

The cost of B may be slightly more because there a r e  

Selection in the flexible substrate category is between ccnfigurations H and I. 
Since both configurations have the same area  and the same method of attach- 
ing cells, the power-weight ratio of configiwation H is more desirable be- 

cause of the smaller  overall weight of the system. 
occupied volume is obviously configuration H because i ts  volume is half that 
of configuration I. The reliability trade-off is a gray area, but favors con- 

figuration H. 
the pneumatic system that must be installed. 
have approximately the same cost. 
system is configuration H, made on the basis of smaller packaged volume 

and a higher power-weight ratio. 

The selection for 

This is due chiefly to the added positioning mechanism and 
Configurations H and I w i l l  

The selection made for  the flexible 

For the final selection between flexible versus  rigid substrate, the argu- 

ments w i l l  be limited to the same considerations a s  the preceding selections. 
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Power-weight ratio has to  take into account several  things: the shadowing 
effect of the scissors  link on the rigid substrate, the packaging efficiency 

of the cells on the flexible substrate, and the total weights of both configura- 

tions. This trade -off is presented below: 

RH = AH WA = 13.83 

WH = 12.86 

H = .87  (13 .83)  
R 
- 

(. 93)(. 97)(12. 86)  
= 1.04 

RA 

The configuration H is shown to be 47' more desirable than configuration A. 
For reliability, the rigid system is believed to be better. Lack of test  data 
on the substrate made analysis impractical. 
connection between the cells. The mechanisms for both concepts have al-  
most identical reliability numbers becauTe each have the same number of 
par ts  and the same type of drive and damper systems. 
of the systems vary by a large percentage, with the flexible concept being 
much more desirable. 
equal for the deployment mechanism. 
cluded, configuration H w i l l  be more expensive. 
design was chosen as configuration H. 
and a slight increase in power-weight ratio versus  cost. 
believes that the flexible substrate has a greater  potential than shown in this 
design study. 
ments have greatly limited the end design. 

The unknown area  is the inter-  

The occupied volumes 

This is shown in Table 2.3. The cost w i l l  be about 

If the substrate development is in- 
The selection for  the final 

It is a trade-off of packaged volume 
Fairchild Hiller 

The confining depth dimension and the deployment require - 
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2 . 9  DESCRIPTION OF FINAL CONFIGURATION 

The final configuration of the deployable solar  a r r a y  is shown in Figure 2. 20. 

'The end plates a r e  machined magnesium upon which a r e  mounted the sub- 
s t ra te  rol lers  and the screw jack drive system. 
magnesium webs stiffened by beads and flanged lightning holes. The back, 

o r  25  inch x 1 3  inch dimension, of the structure is constructed of stamped 

magnesium sheet forming a t rus s  like pattern. 

mounted to the spacecraft by four bolts in the corners  of the back face of the 
box and four additional bolts in the middle of the back face. 

mounting holes a r e  attached to the skin of the structure and provide support 
for screw jacks when they a r e  fully deployed. 

The top and bottom a r e  

The entire structure is 

The la te r  

The release system is activated by a signal from the spacecraft (assumed to 
be electrical) .  This electrical signal activates a dual set of redundant cable 

cutters.  
rol lers  from the fixed position and releases.  the front plate of the structure.  

The rol lers  a r e  restrained during vibration to  prevent unrolling during 
launch. 

Severing of the cable does two things; it re leases  the substrate 

The release of the front plate activates the drive system. 
designed to allow either one of the cable cutters to perform the release 
function. 
spring driving a gear train which turns the screw jacks. 
mounted gears  a r e  fabricated of aluminum and coated with dry lubricant. 

The spools for reeling and unreeling the spring a r e  plastic. 

The system is 

The drive system for the deployable a r r ay  consists of a neg'ator 
The bearing- 

The screw jacks a r e  titanium and a r e  of the ball bearing type screw. 
screws work together and a r e  synchronized by the gear train previously 
mentioned. The screw jacks a r e  half left-handed and half right-handed 
threads arranged s o  that the sl ider blocks on each end of the screw w i l l  

proceed toward each other for the rotation caused by the spring. These 
sl ider blocks a r e  attached to the sc i ssors  links by the hinge pins. The 

drive system becomes activated upon initiation of the release system. 
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The extension mechanism consists of 2 se t s  of eight and one-half sc i ssors  

links which when stowed fold into each other, packaging two links in the 
space of one. 

The channel type drive link is machined aluminum and the box type link is 
of aluminum honeycomb construction. They a r e  joined by non-magnetic 
stainless steel  hinge pins. The drive links a r e  attached to the substrate 

through the end plate. The substrate has been described in detail in Section 

2.7. 
la teral  shifting of the substrate during vibration. 

nized through a gear train to  insure their  uniform deployment. 

ment, the rotational energy of the vehicle pulls the substrate and the links 

from the structure. 
through a gear train to the substrate rollers.  
aluminum. 

pads a r e  attached. 
pad can be varied in position and composition. 
by either shortening or changing materials. 

is driven by the substrate. 

1 

I ts  rol lers  a r e  magnesium tubing with plates on the end to  prevent 
The rol lers  a r e  synchro- 

Upon deploy- 

This motion is resisted by a centrifugal brake mounted 
The centrifugal brake drum is 

The weights a r e  beryllium-copper to which aluminum friction 
The brake can be adjusted several  ways since the friction 

The weights may be changed 

During deployment the brake 

The brake system contains an over-running clutch so that a t  the end of 
deployment the inertia of the brake does not tend to  rewind the substrate. 
The stopping mechanism is simply letting the substrate "bottom out" on the 
rol ler  when full  deployment is  reached. 

in the substrate but, since the radial velocity a t  the ful l  deployment is low, 

the loads were negligible. 
taining the spring load on the scissors links. 

This caused a slight amount of shock 

Locking of the system is accomplished by main- 

Figure 2 . 2 1  is a drawing t r ee  of the design. 
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3.0 ANALYSIS 

3.1 DYNAMIC ANALYSIS 

3.1.1 Introduction 

This section presents the analysis developed in support of the Deployable 

Solar Array program. The analyses a r e  presented in the order  by which 
they effect the detail design decisions. 

Computer programs have been used extensively to economize on time and 

cost. The detail results a r e  presented in Appendix I. 
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3 .1 .2  Vibration Analysis 

The packaged solar a r r a y  was analyzed to  determine the vibration environ- 

ment of the cells. The lateral natural frequency, magnification factor and 

response of the roller-cell package was determined by analyzing a mathe- 

matical lumped mass-spring model. 

beam reflecting the proper stiffness and mass.  

supplied by the substrate and cells was negligible compared to the stiffness of the 

rol ler  and thus not included. The mass  of the roller,  cells  and substrate 

were lumped into two masses  as shown in Figure 3 . 1 .  

The rol ler  was idealized as a pin-pin 

It was  assumed the stiffness 

P I N  P I N  

I 

F I G U R E  3 . 1  
VIBRATION ANALYSIS LUMP MASS MODEL 

It was fur ther  assumed the input to  the packaged cells is sinusoidal and of 

the magnitude specified in the deployable solar  a r r a y  sinusoidal tes t  

specification. 

of the spacecraft structure. 

These inputs were multiplied by four to include the response 

The analysis was performed by initially deriving a set  of deflection influence 

coelficients for  the two lumped mass  model. 

was obtained from the mathematical model by matrix iteration of the 

e quat ion: 

The la teral  natural frequency 
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x = Column matrix of normalized mode shape, in/ in  i 

bij = Matr ix  of deflection influence coefficients, in/lb 

m = Matr ix  of lumped mass,  lb-sec / in  i 

Where: 

2 

u = Frequency, rad /sec  

Structural magnification factors for  a 1 g input were calculated from the 

equation: 

Where: M. F. = Column matrix of magnification factors 

q = Structural damping coefficient 

The fundamental la teral  mode of the roller-cell  package was determined to be: 

f = 287 cps 
n 

Using a conservative structural damping of q = . 0 5  the magnification factor 

from the rol ler  pin was calculated to be 

M . F .  = 2 0 . 0  

F o r  an input to the rol lers  of 8.4 g 's ,  determined a s  previously explained, 

a response of 168 g1 s wi l l  be experienced by the packaged cells. 

The vibration analysis of the packaged a r r a y  included only the substrate and 

cells stowed on the roller.  

a response calculation of the stowed scissor  links to determine excessive 

vibratory loads. In addition, the analysis would be furthered by utilizing 

a more sophisticated model. 

A more  complete Phase I1 study would include 

~ 
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3.1.3 Mechanical System Analysis 

I A diagramatic sketch, dimensional nomenclature and a list of symbols and 

definitions used in  this analysis appears a t  the end of this section. 

3.1.3.1 Introduction 

In this section the equations of motion necessary to  describe the deployment 

dynamics of the Deployable Solar Array a r e  developed. 

The assumptions used in this analysis a re :  

a Rigid body dynamics 

a The deployment occurs in a zero gravity field 

0 Aerodynamic phenomena do not exist 

a The angular velocity vector remains coincident with the 

spin axis 

a The dynamic system is symmetric about the spin axis. 

3.1. 3.2 Description of System 

The system consists of a 3 foot diameter solid, homogeneous, cylindrical 

centerbody around whose perifery are four equally spaced solar  a r r a y  

assemblies. 

substrate stowed on rol lers  and a se t  of sc i ssors  deployment links. 

released, the four solar panels a r e  uniformly extended by centrifugal force 

and the force of the spring driven linkage. 

brakes geared to  the substrates limit the deployment speed. 

ceases  when the substrates have been extended 9.5 feet from the center of 

rotation. 

Each assembly consists of a fixed housing structure,  a flexible 

When 

Self energizing centrifugal 

Deployment 

58 



3.1.3.3 Equations of Motion 

Angular velocity and angular acceleration of the complete spacecraft about 

the spin axis can be described using conservation of momentum principles. 

Denoting the total angular momentum of the system before deployment as 

0 
c = w  I 

C 
0 

it follows that the instantaneous angular velocity a t  any t ime during 

deployment is 

w = C / I  
C 

and 

* 2  
= - C I / I  

w C  

where 

W + 4 W  R 2 4  + - W X  2 
1 = p + 4 w  2 b 3 P  r C 3 P e  

+ -  4 W X R - 4 p X  Rc2 + ’  pXe3 I/ g 
e 3 3 p e c  (4) 

and is a function of only the masses in the system and the deployment length. 

Knowing the total momentum (C) from the initial conditions and substituting 

equation (4) into eqgation (21, the angular velocity can be found for any length 

of paddle. This is given in Figure 3.2. 

= 4 [ r(Xe2 - R c 2 )  + -f(2xe W + R c ) ]  x e / g  (5)  
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The development of Equations (4) and (5) are found in Appendix I. 

(XE-RC) , F E E T  

FIGURE 3 . 2  
Wc VERSUS (Xe- Rc) 

Having described the angular motion of the entire unit, the equilibrium 

equation for each deploying panel can now be defined. 

The centripetal acceleration at  any point on the deployed panels is: 

2 a = - x w  
n C 

Integrating this acceleration times the sc i ssors  mass  from R to x gives 

the total instantaneous contrifugal force of the sc i ssors  unit. 
C e 

F n = W P (Xe + R c ) w c 2 / 2 g  
P 
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Integration of this acceleration t imes the m a s s  of the deployed substrate 

from R to  X gives the total instantaneous centrifugal force of the deployed 
C e 

portion of the substrate. 

The radial force exerted by the sc i ssors  unit, which aids in the deployment 

is as follows: 

2 2 (9) e 
F = ( X - R ) F  

ys l N d N 2  Rp - (x e - C P 

where 

F = Force  which activates the sc i ssors  unit, pound 
YS 

R = Length of one link in the sc i ssors  unit, feet 
P 

There a r e  four (4) inertia forces restricting deployment due to the linear 

radial  acceleration, X ,  
.. 

(1) Scissors .. 
= - IN P x e / 2 g  

Fl P 

(2)  Substrate (Rolled p k s  deployed portion) 

This inertia force acts  in the plane of the deployed substrate. 

=-[Wr + p ( X  e - R  C 1 1  *ie / 2 g  
r FI (11) 

(3)  Brake Unit 

This inertia force acts  in the plane of the deployed substrate. 

(12)  
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The braking force resisting deployment of the panels is derived in Appendix 

I and ac ts  in the plane of the deployed panels. 

(13) 
2 s in  8 

3 2 ; 2 2  
- ‘f wf R1 Rf e Ff - - 

- Cf (R1 - R ~ 0 ~ 8 ~ )  R 
f I . ”  g [ Rf s in  e 

The equation of motion for the radial  motion of the deploying panels, then, 

can be written by summing equations (7) through (13). 

+ F + F  + F  + F  Ff = 0 n n 
r If r P 

FI + FI 
P 

o r  

Since equation (14) is a non-linear differential equation involving variable 

coefficients, a digital solution using iteration techniques taken over smal l  

time intervals is required. 

.. .. 
Solving equation (14) for  X and integrating twice to obtain X and X gives 

the following equations. 
e e 2 

- 
2s 2 Wf Rf 2 

2 W + W  + p ( X  - R ) +  
e C 

P Rr  

e X (1 5) 
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t 

e = / x  e dt + X  e 
0 0 

t 

X e = /  X e dt t X  e 0 
0 

Where 

(16) 

(1 7) 

t ( L  - X + R )  
R r r 2 + r p e  C 

e H 
(1 9) 

= Radius of spool on which the stubstrate is rolled. 
1: 

R 
e 

Iterating these equations with equations (2) and (4) produces the following 

results describing deployment of the Deployable Solar Array. 

and 3 . 4  present curves of deployed length vs time and radial velocity 

vs time. 

Figures 3 .  3 
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3 . 1 . 3 . 4  Results 

The angular acceleration ( W ) occurs when (X - R ) equals 2 . 1 9  feet. 

maximum value is - 0 . 7 5 4  rad. /sec.  . 
occurs when (X -R ) equals 8 feet (full deployment), i t s  value is 

e c  

This e C 2 C 

The minimum angular acceleration 

- 0 . 0 4 7  rad. /see.  2 . 

Figures 3 . 3  and 3 . 4  show deployment distance and deployment velocity 

versus  time. 

adequate as presently designed since complete deployment takes nearly 50 

seconds to accomplish. 

appears to show an initial velocity at the instant of panel release. 

actuality, the panels accelerate to  the velocity shown in approximately 0.01 

seconds making the plotting of this acceleration impractical with the scale 

used. The maximum acceleration, X 
2 mately 90 ft. / see .  . 

value of - 0 . 0 1 2  f t .  /see.  

a r e  practically non-existent following t = 0. 01 seconds. 

It is evident from Figure 3 . 3  that the speed brake is very 

Figure 3 . 4  is somewhat deceptive in that it 

In 

.. 
occurs at time zero and is approxi- e’ 

Peak deceleration occurs at 1 0 . 2  seconds and has a 
2 indicating inertia forces  due to  linear acceleration 

R X E P 

FIGURE 3.5 DESCRIPTIVE DIAGRAM 
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a 

C 

cf 
F 

g 
I 

L 

N 

R 

S 

t 

W 

X 

X 

P 

e 

@1 

@2 

M 

w 

2 
Linear acceleration, ft. /set. 
Total angular momentum, ft. 1b. set. 

Friction coefficient, lb. /lb. 

Force,  lb. 

Gravity acceleration, 3 2 . 2  ft. /sec.  

M a s s  moment of inertia about spin axis, ft. lb. sec.  

Total length of substrate, ft.  

2 

2 

Number of scissors  links 

Radius, f t .  

Gear ratio, Brake speed/substrate rol ler  speed 

Time, sec. 

Weight, lb. 

Radial station measured from spin axis, ft. 

Distance of outermost point on deploying panel from spin axis, ft. 

Radial angle between speed brake mass  hinge and friction point 

Radial angle between speed brake mass  hinge and mass  C. G. 

Substrate weight per  l inear foot, lb. /ft. 

Angular velocity, rad. /sec.  

Subscripts 

Refers t o  stationary housing boxes 

Refers to  cylindrical centerbody 

Refers to outermost point on deploying panel 

Refers to speed brake friction device 

Refers to  normal or radial direction 

Refers to  sc i s so r s  

Refers to substrate (rolled and/or  extended portion) 

Refers to  tangential direction 

Refers to length 
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3 . 1 . 4  Loading Analysis 

3 . 1 . 4 . 1  Introduction 

The purpose of this section is to develop the equations and present the 

component loads for  the deploying panels of the Deployable Solar Array. 

The same assumptions and nomenclature a r e  used in this analysis as are 

used in the section describing deployment dynamics. The loading curves 

shown i the results were produced during the digital iteration solution 

of the equations of motion discussed previously. 

3 . 1 . 4 . 2  Loading Equations 

The loads of primary interest in the deploying panels a r e  the tangential 

(in-plane) shear and bending moments, and the tension in the flexible 

substrate mat e r ial. 

The in-plane loadings a r e  a result of local tangential accelerations caused 

by the angular acceleration of the entire unit about the spin axis (equation 3)  

as well as Coriolis acceleration caused by the instantaneous deployment 

velocity X. 
. 

The total tangential acceleration at  any point on the panel is: 

Since the sc i ssors  unit is fixed to  the centerbody at  a point which does not 

move radially, it is seen that 

The substrate, however, will deploy with a constant velocity since i t  is 

being unwound from a roll. 

x = x  r e 

67 



The assumption that the total tangential acceleration, a 

from zero at  the spin axis t o  a maximum at X is conservative regarding the 

sc i ssors  linkage inertia force but unconservative regarding the in-plane 

substrate inertia force. It is evident f rom Figure 3. 6 that Coriolis accelera- 

tion is very small  near the completion of deployment and that the assumption 

that a is linear f rom the spin axis to the panel tip would serve to  develop 

adequate loads for  design purposes. 

var ies  linearly t’ 

e 

t 

The shear at a point X on the deployed panel can then be found by integrating 

the inertia forces outboard of that point. 

e a t =(?)at 

Integrating equation ( 2 3 )  from X to X yields the following equation fo r  the e 
in-plane bending moment at  a point X. 



f o r  both equations ( 2 3 )  and (24 )  

R S X l X  
C e 

It is assumed that the substrate material  wil l  not reach tangential loads and 

that it will have to  withstand only the tension loads imposed by the speed brake 

and inertia loads caused by X 

the speed brake, expressed by equation (12), and that of the undeployed (rolled) 

portion af the substrate, expressed as follows: 

.. . The inertia loads of interest  a r e  that of e 

1 - - - [Wr - P ( X  - R ) ]  X e k g  
i e C 

F 
r 

Combining the speed brake force, expressed in equation ( 1 3 )  with the inertia 

forces,  all considered to  be acting in the plane of the substrate and at the 

instantaneous position R 

follows for  one thickness of substrate. 

the tension in the substrate can be expressed a s  
C’ 

= Ff 
P r  - + 

2 

Figures 3 .  6, 3 . 7 ,  and 3 . 8  show the results of 

+ 

the loading analysis. 

3 . 1 .  5 Results 

Figure 3 . 2  shows the variation in the angular velocity about the spin axis 

versus  panel deployment distance. The angular acceleration, ( ), occurs 

when (Xe - R ) equals 2.19 feet. 
2 C 

This maximum value is -0. 754 rad. /sec.  . 
C 

The minimum angular acceleration occurs when (X e 
(full deployment and has a value of -0.047 rad.  /sec.  . 

- R ) equals 8 feet 
2 C 

Figures 3 . 3  and 3 . 4  show deployment distance and deployment velocity versus 

time. 

presently designed since complete deployment takes nearly 50 seconds to 

It is evident f rom Figure 3 . 3  that the speed brake is very adequate as 
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accomplish. Figure 3.4 is somewhat deceptive in that it appears to  show an 

initial velocity a t  the instant of panel release.  

accelerate to  the velocity shown in approximately 0.01 seconds making the 

plotting of this acceleration impractical with the scale used. 

acceleration, X 

Peak deceleration occurs at  1 0 . 2  seconds and has a value of -0.012 f t .  /sec.  . 
indicating inertia forces due t o  linear acceleration a r e  practically non- 

existent following t = 0.01 seconds. 

In actuality the panels 

The maximum 
2 .. 

occurs at time zero and is approximately 90 f t .  / sec .  . 
2 

e’ 
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3. 2. 3 Structural Analysis 

A structural  analysis was performed to establish the structural  integrity of 

the Deployable Solar Array.  Margins of safety obtained by the analysis a r e  

summarized in Table 3. 1. 

Appendix 11. 

Supporting calculations are presented in 

Table 3. 1 - Summary of Minimum Ultimate Margins of Safety 

Item Load Mode of Allowable Actual Calc. 
Condition Failure S t ress  psi  S t ress  psi  M.S. 

icissor linkage 

Channel link 1 g static Shear due to 48,000 

deploy. torsion, bend- 

ing, comp. 

Box beam link 1 g static 

deploy . 

Hinge Pins  1 g static 

deploy . 

screw Jacks 1 g static 

deploy. 

3nd Plate 1 g static 

d epl oy . 

jubstr ate Rollers Vibration 

Stowed 

Shear due to 

torsion bend - 

ing, comp. 

Bending and 

Shear 

Bending and 

Shear 

Bending 

Bending 

48,000 

100,000 

70,000 

37,000 

38,000 

3ousing Vibration Local buckling P =408 
CR lbs. Stowed due to  shaft 

35,000 

9,000 

53,000 

68,000 

10,000 

11,000 

P=330 

+o. 37 

+4. 3 

+ . 89  

+O. 03 

+2. 7 

+ 2 . 4  

0. 23 

loads 
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Item Load Mode of Allowable Actual Calc. 
Condition Fai lure  S t ress  PSA St ress  PSA M.S. 

Housing Vibration Tension and 50,000 26,000 0. 92 
Attachments 

Stowed Shear in bolt 

Substrate 1 g static Tension 140 lbs/ in  2. 1 lb/ in  High 

I deploy . I 

3,  2. 3.  1 Design Loads 

The entire system was analyzed for  three loading conditions 

a) Static deployment under 1 g conditions was a load factor of 2 to 

account for any random vibrations and disturbances which may 

occur during deployment. 

b) Dynamic deployment under 1 g condition with a load factor of 2 . 0 .  

c) Vibration of the system in the stowed condition. 

3 .  2. 3 .  2 Static 1 g Deployment 

The condition of maximum loading in the scissor  linkage w a s  obtained by 

equating to  zero the derivative of the torsional and bending moments with 

respect to  angle of deployment. 

deployment of 38. 5 

Maximum torsion resulted in the most cri t ical  combination of loads for the 

linkage. 

during deployment. 

loads delivered to it by the shafts of the substrate rol lers  and screw jacks. 

The hinge pins of the linkage were analyzed for the fully deployed condition 

and the substrate was checked for tension during dynamic deployment. 

Maximum torsion exists for an angle of 

and maximum bending for the linkage fully deployed. 0 

The screw jacks were studied for bending s t resses  and deflections 

The housing w a s  examined for i t s  ability to react the 

Deflections of the scissor  linkage during deployment w a s  studied also and the 

analysis indicated a considerable torsional deflection of the channel section of 



the sc i ssor  linkage may result  during deployment. The linkage will, however, 

retain its integrity and function as required. If the deflection of the deploying 

s t ructure  is considered a problem, additional study of the deflections would be 

warranted. 

3. 2. 3. 3 Dynamic 1 g Deployment 

The dynamic analysis of the deploying panel has determined maximum 

bending, shear,  tensile and axial loads in the sc i ssor  linkage caused by 

deployment. 

deployment were small for deployment rate chosen and the resulting s t r e s ses  

w e r e  negligible. 

to the allowable. 

Forces  and moments in the scissor  links due to dynamic 

Maximum tension in the substrate was very low compared 

3. 2. 3. 4 Stowed Dynamic Loads 

The dynamic analysis of the Deployable Solar Ar ray  in the stowed configura- 

tion produced magnification factors for the rol lers ,  the sc i ssor  linkage, and 

the housing. Those responses a r e  shown below. 

Response (g) 

Dynamic Response for Stowed Configuration Ultimate 

Load = 1. 5 x limit load 

3. 2. 3. 5 S t ress  Analysis 

The linkage supports itself and the flexible substrate a s  a cantilever beam 

during 1 g deployment. The most inboard link of the scissor  linkage is, 
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therefore, the most highly loaded member for  any degree of deployment. 

The total moment applied to this member is a function of the angle of deploy- 

ment and expressed as follows: 

2 2 - = 334 WRP Cos 8 + 72. 5 qRp Cos 0, ft-lbs. M 

where: M = is total moment about an axis perpendicular to 

longitudinal axis of sc i ssor  mechanism. 

= length of scissor  link 

CC = weight of substrate pe r  foot 

RP 

q = weights of scissor  link p e r  foot of link 

8 = angle between link and longitudinal axis 

The total moment 

of the links. 

and the bending component M are: 

is carried partially by bending and partially by torsion 

T Expressions for the torsional component of the moment M 

b 
- 

MT = M Sin Q 

- 
Mb = M C o s Q  

A s  the angle 8 decreases  during deployment, the bending component increases  

continuously but the torsional component increases to  a maximum and then 

deteriorates. 

can be obtained by solving the equation; 
T The value of 8 corresponding to the maximum value of M 

0 
This occurs at  0 = 38.5  . Since the channel and box links a r e  connected at 

points where they cross,they deflect vertically by an equal amount. 

the moment carr ied by each is proportional to its bending stiffness. 

Thus 

The 
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amount of bending and torsion in each member of the linkage w a s  determined 

and the s t r e s ses  produced in each was calculated, 

The scissor  mechanism was also analyzed fo r  axial and t ransverse loads 

resulting from rotational forces .  The stresses due to  these loads w e r e  

I negligible. 

The substrate rollers w e r e  checked in the stowed position under the loads 

produced by the vibration environment. Buckling under combined bending 

and shear w a s  checked. 

studied for s t resses  and deflections due to  bending. 

as a two span continuous beam and influence l ines w e r e  used to determine the 

absolute maximum value of the moments and deflections. 

housing act as a bracket to  ca r ry  the rol ler  and screw jack shaft loads to 

the vehicle. 

the web. 

buckling strength of the box w a s  determined and the ability of the box to  

ca r ry  all applied loads w a s  established. 

The screw jacks of the deploying mechanism w e r e  
I 

Each screw w a s  analyzed 

I 

The sides of the 

I 
The bracket is subjected to concentrated loads in the plane of 

These loads act in such a way as to cause bending and shear.  The 
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3 . 3  RELIABILITY ANALYSIS 

3. 3 . 1  Introduction 

During the Phase I study, a preliminary reliability analysis of the sc i ssors  

mechanism with flexible substrate w a s  performed. 
9) made in the field of mechanical and electro-mechanical devices, predic- 

tions have been made for selected components. 
the fact ihat mechanical devices exhibit a wear-out characteristic. 

device approaches its wear-life the probability of a catastrophic failure be- 
comes progressively greater.  Where the ratio of operating time (t 
wear out life (two) is low, the failures a r e  essentially random. 
mate of (two) random failure rate can be determined. 

Based on studies (Ref. 

Those studies were based on 
A s  the 

) to 
With an esti- 

OP 

For  this analysis, the wear-life is calculated for the bearings, gears  and 
clutch. The mission time for  the Deployable Solar Array is such that the 
component par ts  w i l l  never realize their  calculated life; therefore, only the 
effect of random failures a r e  considered for these components. 

The prediction for the spring motor is based on life data presented by Hunter 
Spring Company (Ref. 8) .  

No data is available for substrates and flexing conductors; therefore, the 
life of each of these items has been estimated. 

3 . 3 . 2  Assumptions 

The analysis assumes that the following conditions exist: 

Mission time - 25 cycles at one minute per cycle for  a total time 
of 25 minutes (24 cycles f o r  ground check and one 
cycle fo r  flight. 

Duty cycle - one minute per hour at 32 P R M  
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De radation 
fat $ o r  - 100 for mechanical par t s  due to launch environ- 

ment. 

BEARINGS 
BRAKE 

( 7 2 )  

It is also assumed that the designer has selected and specified materials ade- 

quate for their  intended use and the manufacturer has used these materials 
a s  specified, employing workmanlike methods. 

GEARS 

3 . 3 . 3  

The reliability block diagram is shown below with the mathematical model 

of the system. 

Model for Solar Cell Deployment 

FIGURE 3.9 RELIABILITY BLOCK DIAGRAM 

3. 3 . 4  Failure Rate Estimate 

The calculations of the individual t e rms  of the reliability mathematical model 
and the estimating method is contained in Appendix 111. 
summary of the analysis results. 

Table 3. 2 is a 

Making use of the mathematical model above the system reliability (Rsys) 
is predicted to be approximately 0.9448. 
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c 

Par t  - 
Bearing 

Brake 

Gears 

Motor 

Substrate 

Conductors 

System 

Failure Rate X 

288 

8 

50 1 

992 

5000 

50000 

56789 

Reliability of Par t  

0.999712 

0.999992 

0.999500 

0.999008 

0.995013 

0.951229 

0.9448 

Failure Rate Summary 

Table 3. 2 
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3.4 THERMAL ANALYSIS 

3. 4.1 Introduction 

This section of the final report  presents a thermodynamic analysis of the 

final configuration of the deployable solar  array.  

analysis is shown in Figure 2. 20. 

analysis was also performed using parameters  of substrate separation 

distance, and angle of the solar  flux. 

The configuration for  this 

A parametric configuration factor 

This analysis also shows the effect of the radient interchange between the 

substrates on the operating temperature of the solar  cells. 

A steady state heat t ransfer  mode w a s  assumed with the maximum orbital 

heat fluxes, since an orbit had not been selected for the configuration. 

Results of the steady state analysis show that the efficient operating 

temperature of the solar  cells w a s  exceeded for  the worst case conditions 

chosen, but were acceptable for a spin stabilized vehicle. 

3. 4. 2 Assumptions 

The assumptions for the preliminary analysis were :  

0 The sun could be at  any angle to the so la r  a r r a y  s o  that 

incident albedo, earth, and solar flux could be "seen" by the 

substrates. 

0 The orbital heat fluxes assumed w e r e  for  the maximum 

value encountered. 

0 The steady-state condition was assumed because the orbit 

parameters w e r e  unknown. 

0 The material properties of the solar  cel ls  were lumped 

together and an effective value determined for  simplicity. 
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This was  also done for the substrates. 

0 The value of the solar absorptance and emissivity of the 

flexible foam were assumed to be 1.0 and 0.9, respectively. 

These a r e  the maximum possible values for  each. 

0 The effect of the configuration or view factor was assumed 

to vary a s  the distance between the substrates and angle of 

incidence . 

3.4. 3 Method of Analysis 

The configuration factors were determined in parametric form. 

effect is on the radiant interchange between the substrates. Two cases  were 

analyzed: 1) The sun was perpendicular to the solar  cells and the total a r ea  

of the substrates was not subjected to any orbital heat flux and 2) The angle 

of the sun to the substrate, at some point in the orbit allows the substrates 

to "see" solar, albedo and earth heat fluxes. 

program was utilized to determine these factors. This program computes 

the configuration factor given the spatial co-ordinates of emitter and of the 

receiver. 

Their 

An IBM 7090 computer 

The problem of radiant interchange between the substrates has a definite 

effect on the temperature of the solar  cell. 

above, total area of the substrates a r e  at different temperatures so that 

the radiation can be given by: 

In the first  case mentioned 

where: 

Q = Stefan - boltzmann constant 

FA = configuration factor 

F, = emissivity factor 

AI & A2 = areas of substrate 
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T1 & T2 = temperatures of each substrate 

When the angle of the substrate or solar  flux is such that the substrates 

see" this flux, a slightly different problem occurs.  The a rea  of the sub- 1 1  

s t ra te  seeing this flux is now at a different temperature than the a rea  

adjacent to it. 

1) ' The areas a r e  at different temperatures and therefore different values 

of the radiant heat flux exist, 2) With these non-isothermal adjacent a r eas  

different, the configuration factor between these a r e a s  and the substrate 

parallel  to it is also different. 

at some angle in the orbit where the substrates not only "see' '  solar  flux 

but also albedo and earth heat flux. 

t ransfer  analysis. 

The radiant interchange is therefore different because: 

It could occur that this deployable a r r a y  was  

This problem. was assumed in the heat 

A steady-state heat transfer analysis was performed on the deployable solar  

array.  

assumed to exist. 

cel ls  would be subjected. The a r r a y  was allowed to be at  some angle to 

the orbit plane in order that the total a rea  of the substrates would "see" 

solar, albedo and earth heat fluxes. 

angle assumed is 36'. 

according to the cosine of the angle and a r e  also shown in Figure 3.10. The 

mater ia l  properties of density, specific heat and thermal conductivity a r e  

shown in Figure 3.11. 

value for  simplicity and identified as nodes 1 and 4 for the solar  cells and 

nodes 2 and 3 for the substrate. 

utilizing a two-dimensional heat t ransfer  program. 

the thermal model shown in Figures 310 and 3.11 . 
of the nodes 2 and 3 is given by 

The llworst'l conditions of heat flux and angle of incidence were 

This gave the maximum temperature to which the solar  

This is shown in Figure 3. 10 and the 

The corresponding incident fluxes were computed 

These properties were lumped into an effective 

The steady-state analysis was performed 

This was set  up using 

The effective emissivity 

1 for parallel plates 
1 f- 1 

t 2 -1 
Fc = 

1 
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this analysis approximated the three dimensional thermal system instead of 

using the one dimensional analysis used in the detail preliminary analysis. 

3 .4 .5  Conclusions and Recommendations 

The two analyses performed indicate a wide possible variation in tempera- 

ture. For example, the assumed orbital parameters  (a spinning vehicle 

versus  a fixed vehicle in  space), had the greatest influence on maximum 

calculated temperatures. 

It is therefore recommended that specific orbital parameters  (apogee, 

perigee, inclination) be defined. 

rotation and the array orientation with respect to body axis should be 

assessed. 

performed and the operating efficiency of the a r r ays  in space may be 

calculated. 

In addition, the l imits on vehicle 

With these design cr i ter ia  a detail thermal analysis may be 
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3 . 5  WEIGHT SUMMARY 

Table 3 . 3  presents a detailed weight summary of Configuration H. 

table does not reflect exactly Table 2 . 3  preliminary data but is close 

enough to  lend confidence that trade-off decisions are valid. 

This 

The item number appearing in the left hand column refers  to item number 

on the layout (Figure 2 .  20). 
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:t em 
No. 

2 

3 

27 

28 

54 

4 

5 

6 

7 

8 

9 

10  

1 5  

18  

1 9  

30 

31 

32 

33 

34 

35 

TABLE 3 . 3  

DEPLOYABLE SUBSTRATE SYSTEM 

WEIGHT SUMMARY 

Nom enc latur e 

Structure 

End Plate (Drive End) 

End Plate 

Housing 

Plate Assembly (Substrate Support) 

SUB TOTAL 

Drive and Deployment Mechanisms 

Spring Motor 

Drum and Gear  Assembly (Drive) 

Drum Assembly (Take Up) 

Gear Assembly (Idler) 

Gear (Pinion) 

Shaft (For  Item 4) 

Shaft (For  Item 5) 

Shaft (For  Item 6) 

Ball Bearing Screw Assembly 

Bearing Block Assembly (Scr. Support) 

Pin (Scissors Links to B / B  Nuts) 

Scissors Link (End Link) 

Scissors Links 

Scissors Half Link 

Scissors Link Assembly (End Link) 

Scissors Link Assembly 

Scissors Half Link Assembly 

Quantity 

1 

1 

1 

1 

1 

1 

1 

2 

2 

1 

1 

2 

2 

2 

2 

1 

7 

1 

1 

7 

1 

Total Weigh1 

.30  

. 3 0  

. 3 5  

. 1 5  

1.10 

.10 

. l l  

. 0 5  

. 0 6  

.02  

.04  

, 0 1 5  

.015 

. 7 5  

.06 

.02 

. 1 5  

. 9 1  

. 0 5  

. 2 3  

1 . 2 5  

. 0 6  
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TABLE 3 .3  (Contld) 

tem 
No. Nomenclature 

36 

29 

11 

1 2  

1 3  

14 

52 

53 

37 

50 

Scissors Hinge Pins 

Fitting - Support Plate Attach 

Damper Mechanism 

Brake Drum 

Brake Shoe Assembly (Wt. 

Intermediate Gear 

Brake Lever and Gear 

Shaft (For  Item 13) 

Gear and Clutch Assembly 

Release System 

Substrate 

Membrane 

St iff  ne r s 

Adhe s ive 

SUB TOTAL 

& Friction Pad 

SUB TOTAL 

SUB TOTAL 

SUB TOTAL 

Electrical System 

Cells Bond and Cover Glass 

Wiring and Interconnections 
SUB TOTAL 

Miscellaneous 

Bearings 

Fasteners 
SUB TOTAL 

auantity 

25 

1 

1 

2 

1 

1 

1 

1 

1 

2 

I? otal We ighi 

. 0 8  

.04  

4 .01  

.16  

. 2 0  

. 0 5  

. 0 5  

. 0 7  

. 0 7  

. 6 0  

.30  

. 3 0  

. 2 1  

1.11 

. 5 0  
1 . 8 2  

4.50 

.52  
5.02 

.18 

. 1 5  

. 3 3  

TOTAL 13 .18  
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4 . 0  RECOMMENDATIONS AND CONCLUSIONS 

This final report  presents the results of a study to select an optimum design 

for  a compact storable solar  a r ray  system for  use with stabilized satellites. 

The study has culminated in a final design using a flexible substrate with a 

sc i ssors  type extension mechanism. 

torque spring driven screw jacks and controlled during deployment by a 
centrifu;.nl brake mechanism. Fairchild Hiller believes that for the condi- 

tions stipulated in the contract, the design submitted is near optimum. 

a trade-off of packaged volume, and power/weight versus  cost. 

The sc i ssors  a r e  driven by constant 

It is 

Al l  of the contract requirements have been met or  bettered except the require- 
ment for a 1 2  lb. package. The design a s  submitted, is 1.18 lbs. over- 

weight. 
1 g and also the package depth of 4 inches. 
than a r e  necessary to fulfill the mission in space and the latter makes i t  
necessary to  use thin inefficient structural  members  to take these loads. 
A considerable weight saving could be made by the use of a deployment fix- 
ture  for static test  o r  by deploying the substrate downward. 
help simulate the loads incountered during the spin condition. 
weight saving may also be made by the use of lighter weight cells now under 
development and close control of the substrate manufacture especially in the 

a rea  of bond thicknesses. 

This is due to the design requirements of static deployment under 

The f i rs t  imposes higher loads 

This would also 
A further 

During this study an investigation was made to determine the parameters for 
the box depth. 
a . 10 inch thick substrate was assumed. 
mechanisms composed of a 12-inch linkage with .38 inch  thick members and 
a 24-inch linkage with . 50-inch thick members. The 12-inch linkage design 
is similar to the one submitted. The 24-inch linkage would be a system ro -  
tated 90' from the orientation of the specified system. It was found that for 

the present packaging with 12-inch links, the panel length is "substrate 
limited'' up to 6. 7 feet and thereafter is "link limited". 
links the panel length is limited to 16 .7  feet by the substrate and thereafter 

is also "link limited". 

Figure 4.1 shows these parameters.  For  the investigation 
The two cases  plotted a r e  for  

For the 24-inch 

If the rotated system could be adopted, the full  
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packaged volume would be used. From Figure 4.1 it is seen that i f  the depth 

of the box were increased to  approximately 5.50 inch and a 24-inch wide sub- 
s t ra te  used, four times the a rea  could be deployed from only slightly more  
than twice the present package size. It is also possible that a more efficient 

packaging of the a r ray  could be made if the relationship between spacecraft 
and fairing were known. Figure 4. 2 is an investigation of the effect of sub- 

s t ra te  thickness on package depth. Note in Figure 4.1 and 4.2 that fo r  
I packages l e s s  than 1.25-inches no length of substrate is obtained. This is 

due to  the excessive bending of the solar  cells on a small  diameter roller.  

For  Phase I1 it is recommended the requirement for tilting the package 

relative tn the spacecraft be included. 
Phase I. 
throughout a one year mission. 

I This requirement was not made in 
Four flat panels on a spinning vehicle w i l l  not provide power 

I( Another recommendation for the design is a central  drive and synchronizing 
system to deploy all panels a t  a uniform rate. 

The feasibility of a flexible system has been proven through fabrication and 
tes t  of several  sample substrates. 
developing manufacturing processes to reduce the cost of assembly, 
testing +e obtain high confidence levels of reliability, 
methods of replacing cells on the substrate after manufacture, and 4) for 
obtaining higher cell packaging efficiencies. 

Additional effort is needed: 1) for  
2)  for 

3)  for developing 

During the study it was found that the temperature for the solar cells arrived 
a t  through our generalized analysis is very marginal. 
analysis, the specific orbital parameters a r e  needed. 

For a more refined 

In the dynamic analysis it was found that the angular velocity of the space- 
craft system is reduced to approximately 40 R P M  af ter  full  deployment of 
a l l  panels. This could possibly eliminate the need for a despin system on- 

I board the spacecraft, thereby reducing weight of the overall system. 
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The reliability of the system is high and results from a conservative design 
using proven parts.  
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5.0 PHASE I1 AND I11 PR,OGR,AM PLAN 

5.1 INTR,ODUCTION 

Phase  I1 will consist of design refinement of the structural-mechanical 

sys tem followed by a final analysis of the detailed par t s  and a re-analysis 

of the complete so la r  cell  array.  

structural ,  dynamic, thermal, and reliability areas. The manufacture of 

the proof of principle model for Phase I1 and the flight type ar t ic les  of 

Phase I11 will be manufactured in the model shop of Fairchild Hiller. 

plan has been written for Phase I1 and Phase I11 and is presented in this 

section. 

This final analysis will cover 

A test 

The Q. C. and reliability plans a r e  also submitted in this section. 

5 .2  DE SIGN 

A refinement of the design wil l  be made to take into account any new 

operating requirements and to  reduce the cost and weight of the system. 

Upon completion, detailed drawings wil l  be made to Fairchild Hiller 

Corporation standards. 

items which a r e  the centrifugal brake and the drive screw jacks. 

f o r  purchased par ts  for  the Deployable Solar Array wil l  be started a s  soon 

as the design refinement has  been completed. 

will be purchased ear ly  in the program. 

plentiful and no difficulty is expected in obtaining the needed quantities. 

Liaison with the model shop wi l l  be provided by the design group and wi l l  

extend for  the full length of manufacture and test. 

covered by the Project Engineer since only minor design changes are 

expect e d . 

These drawings wi l l  start with the long lead t ime 

Orders  

Raw mater ia ls  for  the design 

The materials specified a r e  

Phase I11 liaison wi l l  be 

5 .3  MANUFACTUR,ING AND ASSEMBLY 

The manufacturing and assembly for  the mechanism wil l  be in the model 

shop of Fairchild Hiller Corporation, Bladensburg, Maryland. This work 
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will  be monitored by the Project Engineer and the quality and reliability 

section of the corporation. 

be a t  Fairchild Hiller Corporation's facility in Hagerstown, Maryland. 

Any further development of the substrate will 

5 .4  ANALYSIS 

The s t r e s s  calculations presented in the Phase I report will be revised as 

design changes a r e  made. 

analyzed in Phase 11. Detailed drawings will  be checked by the s t r e s s  group, 

who will, in addition, provide drawing change coverage during the manu- 

facture and test  period. 

tes t  fixtui-es. 

and drawing change 

articles. 

Any other a r e a s  deemed necessary will  also be 

The s t r e s s  group will  also make an analysis of all 

The Phase I11 task of this group will  be material  review action 

coverage necessary to complete the flight worthy 

The Dynamics group support during Phase I1 and I11 will  include recommen- 

dations on new parameters to  be used for  the centrifugal brake, a revision 

of the vibration analysis to take into account the spacecraft stiffness, and 

analytical backup during spin testing of the complete system. 

A further thermal analysis is necessary for this system. 

should include detailed orbital information and wi l l  also attempt to put in 

more  precise values for material  properties. 

test. 

This analysis 

The la t ter  may require some 

5. 5 TEST PR,OGR.AM 

A two part test  program is contemplated to support and evaluate Phase I1 

of the Deployable Solar Array Program. 

development tes ts  of components of the Proof of the Principle Model. 

second part of the test program will  accomplish an environmental test  

program of the Proof of the Principle Model utilizing a dummy flexible 

The f i r s t  wi l l  include engineering 

The 
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substrate. 

pro gram. 

Figure 5.1 presents a flow diagram of the proposed tes t s  program 

- D A M P E R  
T E S T  

- 
T E M P E R A T U R E  ... H U M I D I T Y  - A C C E L E R A T I O N  - V I B R A T ~ O N  - THERMAL - 

S T O R A G E  V A C U U M  

FIGURE 5 .1  DEPLOYABLE SOLAR ARRAY 
TEST P R G G R A M  BLOCK D I A G R A M  

S U B S T R A T E  S P I N  S T A T I C  

5. 5 .1  DeveloDment Tests  

- 
TESTS D E P L O Y M E N T  D E P L O Y M E N T  

The first part  of the tes t  program wi l l  be concerned with engineering 

development tes ts  to demonstrate the operational capability of the 

mechanical components and subsystems. 

the first  subsystem tested. 

solar  cells  on the Proof of Principle Model, it is recommended a sample 

substrate of live and simulated cells be subjected to a limited number of de- 

velopmental tests. 

environments during these tests, the total mass  of solar  cells  must be 

included on the array.  However, to prevent excessive costs, Fairchild 

HiQer proposes to simulate the cell mass  with a combination of actual cells  

and mass-size simulated aluminum strips.  

The damper component shall be 

Since it was not originally proposed to test  live 

In order  to obtain representative and realistic load 

A pattern and distribution of 

4 
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the actual cells  will be selected to provide representative conditions 

throughout the panel array.  

specimens will  be conducted at least  before and after its exposure to each 

tes t  environment. The following outline constitutes a basic plan describing 

the suggested environments to  be experienced by the developmental units. 

Visual and electrical examination of the test  

5. 5.1.1 Substrate Developmental Tests 

Fairchild Hiller is suggesting that in addition to testing the Proof of 

Principle Model, a sample substrate containing an arrangement of actual 

and simulated cells be subjected to the following environments to  investigate 

the structural integrity of the flexible substrate concept. 

shall be rolled on a drum in the same manner a s  the actual deployment 

a r r a y  during these tests. 

The substrate 

0 Fatigue - Tension Test 

The substrate shall be subjected to a tension and fatigue test  

by cycling the test  unit on a spring loaded drum. The fatigue 

shall be experienced by repeated flexures around the drum and 

the tension load is applied by the spring loaded drum when the 

substrate is in an extended position. See Figure 5. 2. 

0 Humidity Tests  - 
The substrate wil l  be rolled on the drum and suspended o r  

mounted in a Bowser Humidity Chamber and subsequently 

subjected to a high humid atmosphere. Test  Criteria:  2 4  h r s  

@ 30' C and 95'7" R. H. 

wi l l  be performed before and after exposure to the environ- 

ment. Principal environmental effects of the test  unit to be 

inve st ig at ed a r e  : 

A visual examination of the specimen 

a. corrosion 

b. swelling 

c. deterioration 
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F L E X I B L E  S U B S T R A T E  

/ CFANK 

HOLDING AND 
V I B R A T I O N  F I X T U R E  

MOTOR AN; GEAR REDUCER 

( 11 R P M  O U T P U T  ) 

FIGURE 5 . 2  TENSION-FATIGUE TEST S C H E M A T I C  

d. loss of strength 

e.  

f. adhesive degradation 

other changes in mechanical properties 

0 Vibration Test 

P a r t  of the suggested evaluation of the proposed deployment 

solar  a r r a y  will consist of a development vibrations test of a 

sample substrate containing an arrangement of live and dummy 

solar cells. Since live cells were not proposed on the Proof of 

the Principle Model, Fairchild Hiller is suggesting an 

additional vibration test  to cover the concept of the live cells 

attached to a flexible substrate. 

the frequency range of 5 to 3000 cps shall be used, however, 

since the sample substrate is smaller  than the actual substrate, 

the input levels shall be determined by analysis and subjected 

to a constant sweep rate  of 2 octaves/minutes. 

For  developmental testing 

Major resonant 
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frequencies of the specimen wi l l  be determined during each 

axis of excitation and f o r  each crit ical  frequency noted. 

minute resonant dwell will  be performed at that frequency. 

Test  levels for the resonant dwell will  be one-half the levels 

used for the sinusoidal sweep test. 

A 5-  

0 Thermal Vacuum Tests  

The substrate test  unit wil l  be mounted o r  suspended within a 

space chamber and the chamber pressure  reduced to 

The specimen will be heated (using heating blankets) to a 

temperature of +70° C until stabilization of it is realized. 

Temperature to the specimen will  then be lowered to -70' C 

until stabilization is reached. 

chamber pressure level, three complete temperature cycles 

shall be completed. 

Torr .  

While maintaining the specified 

A visual examination of the test  unit will  be performed before 

and after exposure to the environment to evaluate any changes 

to  physical and chemical properties of specimen materials. 

5. 5.1. 2 Damper Developmental Tests  

A mock-up of the centrifugal brake wil l  be fabricated and tested utilizing a 

calculated load which will  be expected from the drive mechanism. 

damper wil l  be static tested at  this time to demonstrate its operation char- 

acterist ics and capability. 

during the static and spin deployments. 

The 

This information is required for adjustments 

5. 5. 2 Environmental Test 

The second part of the test program will consist of a carefully planned and 

executed sequence of environmental tes ts  conducted on the Proof of the 

Principle assembly deployable solar  array.  

a r e  designed to simulate the a r r a y  aerospace environments experienced on 

The proposed test environments 
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a typical spacecraft during shipping, ground handling, and storage, power 
flight and space exposure. 

performed, as nearly as possible, to an actual operational sequence so as 

not to  impose unrealistic environmental interaction effects on the test unit. 

Overall  test results will be used to  substantiate the s t ructural  integrity of 

the Proof of the Principle unit and to conclusively demonstrate the opera- 

bility of the solar  a r r a y  deployment system. 

The sequence of test environments will be 

In o rde r  to obtain representative and realistic load environments during 

these tests, the total mass  of solar cells must be included on the a r r a y  of 

the selected configuration. 

cells would be prohibitive. Therefore, Fairchild Hiller proposes to  

simulate the cell mass  with mass-size simulated aluminum slips. 

The cost of simulating this mass with actual 

During its acceleration and vibration environment, the test specimen wi l l  

be adequately instrumented to  effectively measure its static and dynamic 

characterist ics.  

test data wil l  be compared to  the design analysis to conclusively sub- 

stantiate the structural  integrity of the deployable solar  a r r a y  design con- 

figuration. 

least before and after its exposure to each test environment. 

outline constitutes a basic test plan describing the minimum environments 

the Proof of the Principle unit wil l  experience. 

spacecraft has not been established to c a r r y  a deployable solar a r r a y  pay- 

load. Typical aerospace tes t  cr i ter ia  a r e  presented a s  test  environments 

for  this program where ever the environment w a s  not specified in the R F P .  

A l l  the test conditions described in this proposal a r e  in accordance with 

portions of the following documentation: 

S t ress  levels and dynamic responses determined from the 

Visual examination of the tes t  specimen wil l  be conducted at 

The following 

It is understood that a 

a. Guidelines for  research and development of deployable 

solar a r rays  (from GSFC). 

Mil-STD-202B - Test  Methods of Electronic and Electrical  b. 
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Component Parts, 3/14/60. 

Mil-STD-810 - Environmental Tes t  Methods for Aerospace 

and Ground Equipment, 6 / 1 4 / 6 2 .  

c. 

5. 5.2.1 Temperature Storage Test 

To evaluate the effects of long te rm storage, the test unit (in its packaged 

configuration) will be suspended in a Bowser Tes t  Chamber and subjected to  

the following temperature storage environment: 

6 hours @ -20' C 

6 hours @ +60° C 

The specimen will be visually inspected before and after each tes t  condition 

to determine the effects of the temperature environment on the test  unit. 

5. 5. 2. 2 Humidity Test 

While in i ts  folded configuration, the test  unit will  be suspended or mounted 

within a Bowser Humidity Chamber and subsequently subjected to  a high 

humid atmosphere, such a s  encountered in tropical areas.  Test  Criteria: 

24 hours @ 30' C and 95% R,. H. 

A visual examination of the specimen wi l l  be performed before and after 

exposure to the environment. 

unit to be investigated are:  

Principal environmental effects of the test  

a. Corrosion 

b. Swelling 

c. Deterioration 

d. Loss of Strength 

e. 

f.  Adhesive degradation 

Other changes to mechanical properties 

5. 5. 2 . 3  Acceleration Test 

To substantiate the structural  integrity of the selected substrate fo r  its 
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anticipated steady-state powered flight loads, the test unit (in its in-flight 

rolled configuration) will  be mounted to a rotary accelerator and subse- 

quently subjected to three minutes of a combined axial thrust  and radial  

(due to  spin) acceleration. Actual tes t  levels will  be defined at  the t ime of 

test .  For proposal purposes, the following typical conditions a r e  assumed: 

See Figure 5. 3. 
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FIGURE 5.3 LOAD DIAGRAM FOR ACCELERATION TEST 

Adequate strain gage instrumentation wil l  be provided and continuously 

recorded during the test  to conclusively evaluate the effects of the 

acceleration environment on the test  unit structure. 

5. 5. 2. 4 Vibration Test 

P a r t  of the overall evaluation of the proposed deployable solar a r r a y  sub-  

s t ra te  w i l l  consist of a development vibrations test. 

vibrations environment test, a versatile and flexible group of vibrations 

systems a r e  available at both the Fairchild Hiller Bladensburg Test  

To perform the 
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Laboratory and its affiliated Aerotest Laboratories in Long Island, New 

York. The available systems a r e  capable of performing sinusoidal, random 

or combined sine/random noise testing. 

To provide the specified vibrations test  levels to the prototype unit, a Ling 

A300-B Vibration System is proposed for  this test. The system provides a 

8000 pound sinusoidal force output with an automatic cycling frequency range 

of 5 - 3000 cps. 

random output force with half peak-to-peak displacement. 

available for  this test  includes two 7 Channel Sanborn Tape Recorders 

capable of simultaneously and continuously recording 1 2  channels of 

accelerometers. A narrowband analyzer and X-Y plotter a r e  available for 

playback of the accelerometer data and its presentation as plots of accelero- 

meter  vs. frequency o r  power spectral  density vs. frequency. 

Its 1 2  inch (bolt circle) table also provides 5000 lb. R,MS 

Instrumentation 

Approximately 6 accelerometer channels in each axis of excitation a r e  

contemplated to be continuously recorded. 

i ts  folded configuration, wi l l  be mounted to a shaker drive fixture and 

subsequently subjected to the following three major axis sine and random 

vibrations environment. 

The test  unit, while secured in 

The input test  levels specified in Table 5.1 a r e  to the spacecraft interface. 

Past  experience indicates that spacecraft amplifications of 4 to 1 a r e  

possible within the frequency range of 50 to 200 cps. 

input levels to the test unit (for this  program) will  be determined at  the 

t ime of tes ts  and may be increased a s  much a s  4 to 1 for the bandwidth 

of 50 to 200 cps. 

Therefore, actual 
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TABLE 5.1 VIBR,ATION TEST LEVELS 

A. Sinusoidal Tests 

Frequency Thrust  Axis Transverse Axis 

B 

(cps) (2) (g's) (x&;y) (g 's)  
5-50 2.3 0.9 

50-500 10.7 2 .1  

500 -2000 21.0 4.2 

2000-3000 54.0 1 7  

Constant sweep rate  of 2 octaves/minute 

R,andom Test (each axis) 

Frequency Range PSD Amplitude Duration 
(cps) (g2/cps)(g-rms) Min. 

b - 2 0 0 0  . 07  11.5 4.0 -1 
Major resonant frequencies of the specimen will be determined during each 

axis of excitation and for each critical frequency noted. 

resonant dwell will be performed at that frequency. 

resonant dwell wi l l  be one-half the levels used for the sinusoidal sweep test. 

A 5-minute 

Test levels for the 

An evaluation of the test results will be used to support the analysis 

performed and to substantiate the structural  integrity of the substrate for  

its anticipated powered flight vibrations environment. 

5. 5.2.5 Thermal Vacuum Test 

The Proof of the Principle unit wi l l  also be subjected to a thermal vacuum 

(cycling) tes t  to determine i f  a typical orbital temperature /vacuum 

environment is detrimental. 
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The test  unit will be mounted or suspended within a space chamber and the 

chamber pressure reduced to  Torr .  The specimen will  be heated 

(using heating blankets) to a temperature of +70° C until stabilization of it 
is realized. Temperature to the specimen will  then be lowered to -70° C 

until stabilization is reached. While maintaining the specified chamber 

pressure  level, three complete temperature cycles shall be completed. 

A visual examination of the test  unit will  be performed before and after 

exposure to  the environment to evaluate any changes to physical and 

chemical properties of specimen materials. 

5. 5.2.  6 Static Deployment Test 

The Proof of the Principle Model shall be mounted on a fixture and deployed 

under a static environment and at this time, the release system, the drive 

mechanism, and the damper shall be adjusted and proven. These systems 

may require additional adjustment during the spin deployment and i f  so, 

the static deployment will  have to be rechecked. 

5. 5. 2. 7 Spin Deployment Test 

The spacecraft spin rate at deployment is estimated to be a s  high a s  160 

rpm. To demonstrate the performance of the solar  a r r a y  deployment 

system under a dynamic environment, the Proof of the Principle unit will  be 

mounted to a rotating fixture and a limited deployment of the solar a r r ay  

wil l  be performed. 

satellite deployment, the dynamic vacuum chamber located at  Goddard 

Space Flight Center should be considered. 

Should it be necessary to perform a full scale simulated 

5.6 PRrODUCT ASSURANCE 

Product Assurance is intrinsic to Fairchild Hiller 's  functional organization. 

Quality and reliability assurance activities a r e  planned and time phased to 
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provide assurance that contract requirements are satisfied starting in the 

design phase and continuing through to the use phase. To accomplish this, 

0 A quality system is maintained 

0 R,eliability analysis is initiated during the conceptual stage 

0 The failure reporting and analysis system provides feedback 

to designers 

0 Inspections and test results a r e  recorded to provide 

documented evidence of quality 

0 Product assurance tasks are planned in conjunction with the 

total program and experienced personnel a r e  assigned to each 

task 

5. 6. 1 

For Phase I1 and 111 of the Deployable Solar Array Program, an inspection 

plan will be prepared. 

request. 

has been prepared and is contained in Table 5. 2 .  

NPC 200-3 has been used a s  a guide and for  convenience, the preliminary 

plan has retained the paragraph numbering system of that specification. 

The Inspection Plan wil l  provide further details for the implementation of 

each function and the controlling media. 

- Preliminary Inspection Plan 

The plan will be made available to GSFC upon 

A preliminary inspection plan consistent with Phase requirements 

NASA Quality Publication 

Table 5. 3 is the program reliability tasks for Phase I1 and 111. 

5 . 7  SCHEDULE 

Figures  5. 4 and 5 .  5 a r e  the proposed schedule for Phase I1 and I11 

r e  s p  e ct ively . 
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6.0 N E W  TECHNOLOGY 

No new inventions have been disclosed as a result of this contract. 
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8.0 GLOSSARY 

See Appendices. Separate glossaries a r e  provided in each appendix as noted. 
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APPENDIX I 

This appendix presents the development of the equations used in Section 3 .  1 . 3  

pertaining to  the deployment dynamics of the Deployable Solar Array. 

MASS MOMENTS O F  INER,TIA 

A. 

The mass  moment of inertia about the spin axis can be broken down into 

four (4) components 

Deployable Solar Array  About Spin Axis 

1. Cylindrical Centerbody: The centerbody is assumed to  be a 

solid homogeneous cylinder of radius R, for which the mass  

moment of inertia is 

(A .  1) I, = WCR.,/28 2 

2. Panel Housing Box: A panel housing box, which includes those 

portions of the deployment devices which do not move radially, 

is assumed to be a point mass  located a distance R, from the 

spin axis for which the mass  moment of inertia is 

Ib = wbRt /g  (A .  2) 

3. Scissors Unit: The sc i s so r s  unit is assumed to be a uniformly 

distributed mass extending f rom R>c to  Xe. The mass  moment 

of inertia for  one unit about the spin axis is 
Wp(Xe -Rc) 2 Wp(Xe+Rc) 2 

+ ( A .  3) 
IP = 1 2  g 4 g  

4. Substrate: The substrate is assumed to be composed of an  

unrolled portion, located a distance R, from the spin axis, 

and a deployed portion extending from R, to Xe. The mass  

moment of inertia for one complete substrate about the spin 
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The total mass  moment of inertia of the Deployable Solar 

Array about the spin axis is 

I = IC + 41b + 41 + 41, (A. 5) P 

Performing the addition and rearranging t e r m s  yields the 

following general , -  equation 

(A. 6) I :  + - W  4 X R - 4pXeRc 2 4  + 3 ~ X z  - 
3 p e c  

The time derivative of equation (A. 6) is required to evaluate 

the instantaneous angular acceleration of the Deployable Solar 

Array about the spin axis. 

equation (A. 6) are those containing Xe. 

The only time varying t e rms  in 

B. Undeployed Substrate ( 2  Rolls) 

The undeployed substrate is considered to be two homogeneous masses  of 

radius Rr wound around spools of radius Rtre as shown in the following 

sketch 

(ONE 

.. 
x e  

OF THE T W O  R O L L S )  

I- 2 



The mass  moment of inertia of the substrate about the centerline of the 

spools can be approximated as follows, neglecting the spool radius and mass.  

The inertia moment caused by angular acceleration of the two rolls is 

An equivalent inertia force restraining deployment acting tangentially to the 

roll  and in the plane of the substrate may be taken as 

o r  

Xe/2g 

C. Total Substrate (Rolled Plus Deployed Portion) 

(A. 10) 

The inertia force for the deployed portion of the substrate may be taken a s  

(A. 11) 
I t  

FI = - p(Xe-RC) %e/  g 
r 

Adding equations (A. 10) and (A. 11) to obtain the total  equivalent inertia 

force in the plane of the substrate gives 

F = - [Wr+p(Xe-Rc)] Xe/2g (A. 12 )  

D. Speed Brake 

It is convenient to t ransfer  the inertia moment of the speed brake, due to 

Xe, to the axis of rotation of the undeployed substrate roll  so that an 

equivalent inertia force similar to that of equation (A. 10) can be defined. 

.. 

Neglecting the inertia of the gear  train, the inertia of the speed brake about 

its axis of rotation can be taken a s  

(A.  13) 2 
If = W f R f /  g 
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The equivalent inertia referred to the axis of rotation of the undeployed 

substrate rolls is 

2 2 I; = S WfRf / g  (A. 14) 

where 

S = speed ratio, Wf /Wr  

noting that 

;r = g e / R r  

The equivalent inertia moment is 

2 
Tf = - I '  f r  & = -S w f f e  R 2 x  lgRr (A. 15) 

An equivalent inertia force restraining deployment acting tangentially to 

the roll  and in the plane of the substrate may be taken as 

F = T f / R r  
If 

o r  
2 2.. 2 

F = -S WfRfXe/gRr 
If 

SCISSORS FORCE 

(A. 16)  

The sc issors  unit depicted in the following sketch consists of N links and 

is driven by a constant torque spring system which applies a constant pair  

of opposing loads, Fys , tending to deploy the linkage outward. 
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Two approaches are available to  determine Fp = f (F 1. The first is to  

start at point E and follow the load Fp through the linkage system ending 

with the forces  Fys which are required to support Fp . 
is an energy solution in which the instantaneous l inear motions (dy) of the 

points denoted 'A' multiplied by the Fys forces must equal the instantaneous 

l inear motion (dx) of the point denoted 'E' multiplied by the Fp force. 

Fp/2 reactions do not move in the direction of the forces and, hence, do not 

enter the calculation. 

Fp = f(Fys) gives the following result. 

Y s  

The second approach 

The 

Selecting the latter method for  solution of 

Consider the half-link A-B: 

&A\ i -lpDxi B 

The minus 

away from 

x =  ' 4- - Y  
4 

- Y  - -  
XI 

sign merely indicates that the points A and B cannot both move 

the origin at  the same time. 
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Denoting dy as a minus distance gives 

dX' = dy c o t 4  

Since the points 'A' are restrained against motion in the X direction, it can 

be seen from proportionality (AC = 2AB) that the points IC' will move a 

radial  incremental distance 2 dX' . 

Following this incremental motion through the links to point E will  show 

that 

dXe = 2Ndy cot + 
Writing the energy equation 

o r  

Fp(2N dy c o t @ )  = 2 F dy 
I ys 

It follows that 

(A. 17) 

(A. 18) 

SPEED BR,AKE FR,ICTION 

The speed brake mechanism consists of a "brake drum" housing two masses  

whose centrifugal forces cause two friction surfaces to bear  against the 

brake drum creating a torque which opposes the angular velocity of the 

brake mechanism. 

nomenclature. 

A sketch of the mechanism is shown below to define 
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1 

W R w ‘ / Z $  
F F F  

F T / 2  
F N / 2  

Noting that the forces  and loads occur in pairs, the following equations 

are written fo r  the entire brake mechanism. 

Summing moments about the mass hinge points gives 
2 

)Rfsin 82 + Ft (R1 -Rfcos 01) - F,Rf sine 1= 0 (A. 19)  
(Wf R4f W f  

g 
But 

Ft = C f F n  (A. 20) 

Substituting equation (A. 20) into (A. 19) and solving for  F n  gives 
2 2  WfRf wfsin8 2 

Fn = g LRfsin 81-Cf(R,1-Rfcos 8 , ) )  
(A. 21) 

The friction torque about the axis of rotation is 

Tf = R , l F t  1 R , l C f F n  (A. 22) 

Solving for  the torque about the axis of rotation of the undeployed substrate 

rol ls  gives the following expressions. 

Noting that 

W f  = s w  (A. 23) r 

Tr  = STf 

and 

0 r = X e / R r  (A.  25) 
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it follows from equations (A. 22) that 

(A. 26) 
C ~ S ~ W ~ R ~ R ? ~ ~  s in  e 2 

Tr = sTf = SRICfFn = gLRfsin 81-Cf(R1-R.fcos e l ) ]  Rg 

An equivalent friction force restraining deployment acting tangentially to  

the undeployed substrate roll and in the plane of the deployed substrate may 

be taken as 

Ff = Tr /Rtr 

Therefore, 

(A. 27) 
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APPENDIX I1 

STRUCTURAL ANALYSIS CALCULATIONS 

C 

I -  

1. Analysis for axial loads in Scissors links 

Forces  applied to  the sc i ssors  linkage through the screw jacks a r e  constant 
but,the forces within the linkage a r e  a function of the degree of deployment. 

The forces acting on the linkage system a r e  shown in Figure B-1. 

F O R C E  IN 
S C R E W  JACK i 

F/17 C O T e -  

-2F/17  C O T  8 
F/17 C O T e -  

R E A C T E D  BY 

T E N S I O N  IN 
A 

T H E  SUBSTRATE 
FIGURE B ( 1 )  

The axial compression and transverse shear  in the sc i ssors  links caused by 
this loading is also a function of the degree of deployment and is different 
for each member of the linkage, the most inboard link being the most s t r e s s -  

ed. The shear  and axial load for the most s t ressed link for  
(corresponding to  maximum torsion) is computed below. 

8 = 3 8 . 5  0 

F z  =. 3 0 L B S .  

38.5. 

I 
v=22 LBS. 

Y P  I 2 0 L B S .  

F Y  = 3 o / i 7  cor- 
38.5 = 2.21 LBS. 
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where: 

P = 30 Sin 38.5' + 2 . 2 1  Cos 38.5' 

0 0 
V = 30 Cos 3 8 . 5  - 2 . 2 1  Sin 3 8 . 5  

P = 2 2 . 1  lbs. 

V = 20 lbs. 

2.  Bending: under 1 g Deployment 

The sc i ssors  links were analyzed for the bending and torsional s t r e s ses  un- 
der  1 g deployment. The loading of the system is shown in Figure B - 2 .  

Z 

t J. 
e 

-+- 
.I. 

X 

L I N K A G E  LOADS 

L  COS^ ZL c o s g  

2WL COS8 ~ W L  cosg WL c o s e  

FIGURE B (2) 

t 
17 W L  COS0 

2L = length of link = 1 1 . 8 3  in. 

W = weight of substrate and cells per inch = 0.026 lbs/in.  
q = weights of sc issor  links 0. 2325 lbs. 
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The moment in the last  link is: 

2 2 
M = 344 W COS 8 +72.5 qLCOS 0, ft-lbs. 

Part of this is carr ied by torsion M and par t  by bending Mb of the links T 

2 2 
MT = 344 WL Cos 0 Sin e+ 72 .5  qLCos BSin 

A plot of MT versus 8 is shown in Figure B-3. 

MT 
LB-FT. 4 Figure B-3 

Variation of torsional 
moment with angle 
of deployment 

0 
The maximum torsion in the links occurs for  9 = 38.5 . The distribution 
of'moment to  the channel and the box link 

determined by considering the condition that the vertical deflections a r e  
equal, and the conditions of equilibrium. 

of the scissors  linkage can be 
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6 = 6  
1 2 

~ but M1 +M = (Equilibrium Condition) 
2 

2 
MlL12 = M2Lz 

2E111 2E212 

I Thus, the bending and torsional components in each member can be computed 
using a factor of 2 for a l l  ultimate loads. 

(deflection condition) 

= 0.35 x 164 x 2 = 115 lb-in (Torsion in channel link) 

= 0.64 x 164 x 2 = 212 lb-in (Torsion in Box link) 
MT1 

MT2 
I 

where: 
Subscript 1 re fers  to channel link 
Subscript 2 refers to  box link 

= 0.138 TI = 0 . 3 5 m  
0.392 

M1 

M = 0.254 = 0 . 6 5 m  
2 i i . 3 9 2  

MB1 = . 35  x 207 x 2 = 125 lb-in (Bending in channel link) 

MB2 = . 65  x 207 x 2 = 270 lb-in (Bending in Box link) 

Stresses  due to  axial load, t ransverse shear, and bending shear  a r e  negligible. 



3. Dynamic Deployment Loads 

The Maximum bending moment (m),transverse shear  force (v) and axial 

load (t) in each member of the sc i ssors  linkage can be related to  the resul-  
tant moment M, shear V and axial force T acting at each section of the 

linkage for various degrees of deployment. 

m = V L C o s e + T  L S i n 8 +  M 
2 2 2 
- - - 

v = v case+ T s i n e +  M - - - 
2 2 2L 

t = T C O S ~ + M  - cot e - - v cos e - 
2 2L 2 

where: 
2L = length of a sc i ssors  link 

8 = angle of deployment 

The s t r e s ses  resulting from these forces and moments a r e  negligible. 



4. Stress Calculations 

a) Channel 7075 Al. Aly. 

.03 

= MC = 125 x 1.25 = 1,400 psi  
I .138 

1 
= T c  = 114 x .075 = 35,000 ps i  

K 2 4 . 4 ~  

= 35,000 ps i  f 
max 

T = a- + max = 35,700 ps i  
-max 7- 

0.375 H 
M.S. = 48,000 -1 = 0.37 

35,000 

where: 
4 I = .138 in. 

C1= 2.5 in. 

Ref. 1 C = .075 in. 
K = 24.4 x 10 in. -3 4 

b) BOX link 7075 al. aly. 

2 . 3 "  

.s" 
0.3 

o- = 270 x 1.15 = 1,270 psi  
.254 

- 21 2 T - T =  

i t l (a - t )  (b-tlj 2 x. 02(2.2)(. 29) 

T = 8,320 psi  

= 8,955 psi  

max 

O-max 

M.S. = 48,000 -1 = 4.36 
8,955 

= 8, 300 psi  
Ref. 1 
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where: 
I = .254 in. 4 

c = 1.15 in. 
a = 2.3 in. 

b = 0.3 in. 
t = 0.1in.  

tl = .02 in. 

c)  Roller and Substrate (Response = 252 g ult. 

Weight of Substrate = 2.5 lbs. 
W = 2.5 x 252 = 46.3 lbs/in. 

13.6 

Mmax = WIl 4 46.3 x (13.6) 2 = 1070 lb-in. 
8 8 

Z = I = * t r2  = 0.106 in. 3 - 
C 

Q-=  M = 1070 = 11,000 psi - 
Z 0.106 
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Buckling of tube 

1 
1 
1 
1 

11 

3 ccr = Cb Et  = 0.3 x 2500 x 0.06 x 10 = 80,000 psi  
77 - 

r 

( buckling not cri t ical)  

= 34,000 psi FTU 

M.S. = 34,000 -1 = 2.1 
11,000 

d) Housing (Vibration Loads) 

0.05 MAGNlSlUM 0.06 M A G N l S l U M  

M 1300LB-IW 

‘i- 800 L B S  

400 LBS 

f- 
400 LBS 
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2 
= K  E K = 4.4 'cr 

= 8, 150 psi qcr = 440 lbslin. q = 800 = 61.5 lbs/in.  
1 3 M . S .  High 

Scr 

2 
= K  E K =  21 S c r  

= 39,000 psi S c r  

= MC = 1300 x 2 . 3  = 2 , 8 3 0  psi ( M . S .  High) 
1.08 

rbrwd 
I 

Check housing for effect of locally applied concentrated loads. 

Largest  concentrated load = 330 lbs. 

Bearing Stress: Plate is stiffened locally a one inch diameter 

0 = P  = 330 = 5, 500  psi. 
fbr  ~b 

. 0 6 x l  

Local buckling under concentrated loads 

E t 3  = I 6 3 - x 6 . 5 ~ 1 0  x ( 0 . 0 6 )  = +  

. 9  b 3 'c r 
(1-v")b 

= 1630 lbs 
b 

Assume that effect of concentrated load w i l l  not 
be felt more than 4" away from concentrated 

U4 't 
load (b = 4") 

= 1630 = 408 lbs. Largest concentrated load = 330 lbs. 'cr - 
4 

0 
M . S .  = 408 -1 = 0 . 2 3  

330 
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e )  Hinge Pins of Scissors linkage 

The maximum moment transmitted by any hinge is for the fully deployed con- 
0 2 0  

figuration 0 = 10 at which point M = 26.0 S COS 10 + 7.64 COS l o o  = 

33.2 ft-lbs = 398 lb-in of this 0.65 M is carr ied by the Box link section. 

Using an ultimate factor of 2 g, the max moment across  a hinge is 517 lb-in. 

.125 DIA B E R l L l U M  
C O P P E R  P I N  

Pin is in double shear: 

M = 517 lb-in 

155 LBS 

- 370 165. 
A 0 . 0 1 2 3  IN  

z I 1.9 10-4 IN 

7 

185 L B S  

Shear Stress  = P = 185 = 7 = 15,000 psi. 
A .0123 
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Bending of Pin: Ccmervatively assume a gap of .05" 

M = 185 x .05 = 92.5 lb-in; = 9.5 = 49, 000 psi. 
1. 9x10-4 

Combined Stresses  

7 max j / i  = 29,000 psi. 

= (24.5 + 29) x103 = 53,000 psi r m a x  

M = 90,000 -1 = 2.1 (Shear) 
29,000 - 

= 100,000 -1 = 0.9 (Tension) - 53 MS 

f) End Plate (181 Fiberglass 0.06 thickness) 

The end plate supports the substrate tension load a s  a channel in bending 
about the end hinge of the scissors  linkage. 

total Moment = 2x10 lbs x 3" = 30 lb-in x Factor of 2 = 60 lb-in 
2 



Channel Section 

S U B S T R A T E  

‘I 

* 
SCISSOR 

L I N K  

- 

P) Screw Jack Bending. Stress  and Deflections 

The location and magnitude of the linkage load on the screw jacks both de- 
pend on the degree of deployment. 
the loads acting a r e  the maximum loads possible but, act  a t  the position 
along screw to cause maximum bending and maximum deflections. 

An overlapping assumption is made that 
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T I T A N I U M  SCREWS 

130LB S- 

7LES 

M = 796 LB-IN. 

P I  = VARIABLE 

P2 = VARIABLE 

Dl = VARIABLE Dz = V A R I A B L E  

Absolute maximum moment = 157 lb-in 

w 0.30- 

/- 7LEs 

M = 796 LB-IN. 

= 68, 000 psi. 

M.S.  = 70,000 -1 = 0.03 - 
68,000 
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where: 
3 Z = 2 3 ~ 1 0 - ~ h .  

-4 3 I = 6.9~10 in. 

Absolute maximum deflection 

6 = .0093PL3 
E1 

b = .0093x130~7~ = .04 in. 0. K. 
1 5 ~ 1 0 ~  x 6.9~10-~ 

h) Substrate Loads 

Maximum load in substrate during dynamic deployment = 25.5 lbs. = 

2.1 lbs/in. 

Allowable load in substrate = 140 lbs/in. 

M. S. = high 
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APPENDIX I11 - RELIABILITY 

This section of the Appendix presents the failure ra te  calculation. 

1 . 0  BEARINGS 

In the following analysis fo r  the bearings the worst case was considered to 

be typical. 

be higher than that computed. 

this approach appears realist ic when considering these bearings rotate at 

l e s s  than 1 / 2  RPM.  

It is apparent this approach is conservative and reliabilities will 

For the sleeve bearings on the sc i ssors  links 

Duty Cycle - Assume one one-minute cycle pe r  hour at 32 R P M  

Equivalent Duty Cycle = 4. 2 x 100 5 1370 
32 

Speed Size Rating 

Bearing Size = , 375 x 25. 4 = 9 .53  mm 

Shaft Speed = 32 RPM 

DNValue = 9 . 5 3  x 32 = 305 DN 

13yo Duty at 305 DN = . 1 3  x 305 = 40 DN 

Hot Spot Temperature = 150°F 

Enter Figure 5 - 1  of Reference 1 for failure rate.  

Failure Rate = 1701 1000 hours (uncorrected) 

Assuming resultant thrust load i s  7570 load limit, enter Figure 5-6 

of Reference 1. 

Failure Rate = ly0/1000 hours (corrected) 
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Degradation factor for  launch environment = 100 

Failure rate = 100 x l ~ o / l O O  = 1 0 0 ~ / 1 0 0 0  hours 

W e a r  out failure rate in o / o / l O O O  hours fo r  calculated life period (tc) 

t = - l o5  = 100,000 = 1000 hours 
FR 100 C 

The unit being analyzed wi l l  never be subjected to  1000 hours of operation; 

consequently, the only r ea l  possibility of failure for the mission as defined 

would be the probability of random failure. 

the ratio of random to degradation in generic failure rate = 0. 01. 

From Reference 1, Figure 4-1, 

Therefore, F random = . 0 1  
F degradation 

F R  = . O l  (100) = l . O % / l O O O  hours 
- 6  

x -)= 25 e -4 x 10 
= e -(* 60 

- X t  = e  
RB1 

For  total number of bearings (72) 

2.0 BRAKE 

The main wear effect on the brake wi l l  be in the bearing. 

by shock loads on engagement, frequency, and speed of operation. 

W e a r  is influenced 

In this application, the DN value is less than 50 and the shock load experi- 

enced on engagement, frequency, speed of operation are low values. 

fa i lure  rate, without modification for the aforementioned factors of 1% are 

1000 hours is assumed. 

A base 

The random failure ra te  is as follows: 

Degradation factor due to  launch = 100 
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FR = 1 x 100 = 100~0/1000 hours 

= . 0 2  degradation Ratio of Frandom to F 

= . 0 2  x 100 = 270/1000 hours 
FR - R  " -8 x 10 - X t  = e-( ;:io x E) = e  

60 RBR = e 

3 . 0  GEAR REDUCTIONS 

This prediction applies to instrument type reduction gear boxes. Degrada- 

tion due to accuracy which is attributable to increase in back-lash resulting 

from wear which is a function of speed (ratio) duty cycle output loading, and 

frequency of reversal .  Since correlation between this prediction and a p re -  

diction for la rger  reduction gear boxes is not available, this prediction will 

at least give an indication of the approximate failure levels to  be expected. 

Assume Precision Class I AGMA spur gears. 

Substrate Gea r s  

Reduction in three passes 

Ratio 1: 1 

Speed Input = 32 RPM 

Assume one one-minute cycle pe r  hour at 32 RPM for calculating a 

duty cycle. 

Duty cycle = 1370 (reference Paragraph 1) 

Effective Accuracy Failure Rate 

EAFR = Base failure rate x duty cycle x number 

BRF = 10% failures per  1000 hours  (reference 1) 

EARF = lo% x . 13 x 3 = 3. 9~0/1000 hours 1000 

of passes  
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Effective reduction ratio failure rate 

ERRFR = 100 
x duty cycle p z z  

- loo x . 1 3  
1 

1 3  o J o / l O O O  hours 

No factor for reverse  drive o r  stops. Bearings have already been considered. 

Calculated life period. 

Total component failure rate = 1 3  + 3. 9 = 16. 9%/1000 hours 

Degradation factor due t o  launch = 100 

FR = 100 x 16.9 = 1690~0 /1000  hours 

Calculated l i fe  = t = l o 5  = 100000 
FR 1690 

= 59. 2 hours 

F o r  this mission, the gears  wi l l  never be operated 59. 2 hours. 

real possibility of fa i lure  would be that of random failure. 

The only 

Ratio FR . 0 2  
F D  

FR = . 0 2  x 1690 = 33.87'0/1000 hours t = - 25 hours 
60 

U 

-141 x 10 

1000 60 = e  RSG 

Drive Gea r s  

Reduction in one pass  

Ratio 1:2. 4 

Duty Cycle = 1370 (Reference, Paragraph 1) 

11-1 8 



Effective Accuracy Failure Rate 

EAFR = Base failure rate x duty cycle x number of passes  

BFR = 10% failures per  1000 hours (Reference 1) 

EAFR = mo 
1000 x . 1 3 x l  1. 370 / 1000 hours 

Effective Reduction Ratio Fai lure  Rate 

x duty cycle 100 ERRFR = - 
+zG- 

- = loo x . 1 3  . 645 

= 20. 2 70/1000 hours 

Calculated Life Period 

Total component f a i l u r e  rate = 20. 2 -t 1. 3 = 21. 570/1000 hours 

Degradation factor due to launch = 100 

FR = 100 x 2 1 .  5 = 215070/1000 hours 

I U  
Calculated Life = t = - = 100000 = 46 .5  hours 

2150 c FR 

F o r  this mission the gears  wi l l  never be operated to the life of 46. 5 hours. 

The only real possibility of failure being that of random failure. 

Ratio of FR - = . 0 2  
FD 

F R  = . 0 2  x 21. 50 = 430/00/1000 hours 

II-19 



For  both drive gear m e s h e s ,  

= .99964 
RDG 

G e a r  Reliability 

RG = (RSG) (Rm) = e 
-360 x -501 x x e  = e  -141 x 

4.0 SPRING MOTOR 

Mean Cycles  Between F a i l u r e  

FR = / 1000 cycles  = 400/0/1000 cyc les  (Reference  2) 
25 

Launch Environment 

Degradation factor = 100 

F R  = 40 x 100 = 4000q'0/1000 cycles 

Number of cyc les  = 1 FR 
FD Rat io  of - = . 02 

" 
-800 x 10 

-XC = e  {& "') = e  
RMl = e 

T e s t E nvi r onrn e n t 

F R  = 4070/1000 cycles  

Rat io  of Fy FR - - . 0 2  Number  of cyc les  = 24 

F R  = . 0 2  x 40 = .8q'o/lOOO cycles  

-192 x R M 2 =  e - x c  -008 x 24) = e 
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Motor Reliability 

-192  x x e  
- -800 x RM - RMl RM2 = e  

-992 x = e  

5 . 0  SUBSTRATE 

There a r e  no failure ra te  data available on the flexural capabilities of the 

substrate. 

5000 cycles. 

launch environment renders  the launch environment degradation factor un- 

realistic, and is eliminated. 

degradation to random failure ra te  is also eliminated. 

Therefore, the failure ra te  has been estimated at one failure p e r  

In addition, the fact that the substrate is rolled throughout the 

In the interests of conservatism, any ratio of 

F R  = 1 = .0002 
5000 

-.0002 x 25 -5000 x RS = e = e  

6 . 0  CONDUCTORS 

Failure ra te  data for the conductors is also unavailable, so the failure ra te  

for  this item is estimated at one failure in 500 cycles. 

factor and failure ra te  ratio are eliminated for the reasons stated above. 

Again, the launch 
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